УРАВНЕНИЕ ОКРУЖНОСТИ
За неделю до проведения урока класс делится на четыре группы. Каждая готовит презентацию, отражающую название команды.
Цели урока:
1. Образовательные:
- систематизация знаний, умений и навыков по теме “Метод координат”,
- совершенствование навыков решения задач.
2. Развивающие:
- развитие математически грамотной речи,
- логического мышления,
- культуры диалога.
3. Воспитательные:
- воспитывать познавательную активность,
- культуру общения,
- культуру диалога.
Ход урока
I. Организационный момент.
В начале урока выдается командам оценочный лист (Приложение 1) с целью самостоятельной оценки учащимися степени участия каждого члена команды в подготовке к уроку и его проведении.
Рассказываются правила урока. За каждое правильное решение команде выдается лепесток определенного цвета:
все ответы верные – красный;
одна ошибка – зеленый;
две ошибки – жёлтый.
Лепестки крепятся на магнитную доску, образуя цветок.
Итоговая оценка выставляется с учетом этого бланка, а также учитывается количество и цвет набранных командой лепестков в цветке на доске.
2. Знакомство с командами (представление презентаций, Приложение 2).
3. Актуализация знаний учащихся.
Учитель:
– На последних уроках геометрии мы познакомились с еще одним способом решения задач МЕТОДОМ КООРДИНАТ.
Задавая фигуры уравнением и выражая в координатах геометрические соотношения, мы применяем алгебру к геометрии. Так мы поступили, когда выразили через координаты основную геометрическую величину – расстояние между точками, а затем, когда вывели уравнение окружности и прямой.
Пользуясь координатами, можно истолковывать уравнения и неравенства геометрически и таким образом применять геометрию к алгебре и анализу. Графическое изображение функций – первый пример такого применения метода координат
Метод координат в соединении с алгеброй составляет раздел геометрии, называемый “Аналитической геометрией”.
Сегодня я предлагаю еще раз поговорить об уравнении окружности и проследить, как алгебра помогает в решении геометрических задач.
4. Разминка.
Учитель:
– На доске записан ряд уравнений. Какие фигуры они задают?
Команды получают карточки с заданием. Время обдумывания 2мин.
По истечению времени идет опрос команд по очереди.
1 | 7. |
2. | 8. |
3. | 9. |
4. | 10. |
5. | 11. |
6. | 12. |
Последнее уравнение вызывает сомнения т.к. ранее не встречалось в таком виде.
Учитель показывает как, выделив полный квадрат, получить уравнение окружности.
Оценить результат работы команд.
ЗАДАНИЕ 1
Выясните, будет ли данные уравнения задавать окружность, если да, то укажите радиус и координаты центра. Если нет, то почему?
Каждая из команд получают свою карточку. Время 7 минут.
1. | 1. |
2. | 2. |
3. | 3. |
1. | 1. |
2 | 2 |
3 | 3 |
ОТВЕТЫ
Последние уравнение в каждой карточке не задает окружность, и учащиеся поясняют почему. Оценить ответы.
ЗАДАНИЕ 2.
1. Как могут взаимораспологаться две окружности? Дается время(3 мин.). Предлогается ребятам нарисовать различные варианты на ватмане и показать рисунки. После демонстрации и обсуждения всевозможных вариантов Предлогается следующая задача.
2. Как взаиморасположены линии заданные уравнениями?
и
Изобразите ответ на обратной стороне ватмана (на нем, заранее, нанесена система координат.)
Ответ:
R =2
O
r=7
Значит: первая внутри второй. <Рисунок1>
Результат этого задания оценивается следующим образом:
Команда, выполнившая первая – красный; вторая – зеленый; третья – желтый
После подведения итогов предлагается задача общая для всех команд.
Командам выдается карточка с кратким описанием условия. Текст задачи зачитывается.
ЗАДАНИЕ 3
Окружность задана уравнением .
Точка с координатами (5;4) является центром другой окружности касающейся первой внешним образом. Напишите уравнение этой окружности.
Вопросы для обсуждения:
-Поможет ли рисунок в решении задачи?
-Что можно узнать из уравнения первой окружности?
-Что надо знать, чтобы записать уравнение второй окружности?
-Как можно узнать радиус второй окружности?
Ответ: <Рисунок2>
Оценка результата.
Перед следующим заданием полезно повторить:
Какая окружность называется описанной около треугольника?
Что значит, точка принадлежит графику уравнения?
Что необходимо знать для написания уравнения окружности?
ЗАДАНИЕ 4
Написать уравнение окружности описанной около треугольника с заданными координатами вершин.
Какие, алгебраические, приемы могут быть использованы для решения поставленной задачи? (составление систем уравнений и приемы их решения).
1. А (-2;3) 2. М (2;3)
В (2;0) N (-2;0)
С (-2;-3) К (2;-3)
3. С (3;-7) | 4. В (1;-4) |
Д (8;-2) | К (4;5) |
К (6;2) | Д (3;-2) |
ОТВЕТЫ
1. | 2. |
3. | 4. |
Оценка результатов
Следующую задачу решает учитель.
Задача: Что представляет собой множество точек плоскости, отношение расстояний от которых до двух данных точек есть величина постоянная?
Решение: Впервые эту задачу сформулировал и решил Аполлоний Пергский, (260-170 гг. до н.э.)
Решение получилось очень сложное – поскольку применены геометрические приемы. Однако в работах французского математика Рене Декарта эта задача решена более элегантно. Декарт применил метод координат.
Я предлагаю посмотреть на это решение. Итак, пусть даны две точки ,А и В и некоторое положительное число k, равное отношению расстояний до точки М.
1случай. Если k=1,тогда множество точек М есть серединный перпендикуляр к отрезку АВ.
2 случай. Пусть k целое не отрицательное число не равное 1
Для удобства решения возьмем k=2 , т.е. МА: МВ=2.
Введем систему прямоугольных координат. Совместим начало отсчета с точкой В. В качестве положительной полуоси x возьмем луч ВА. (рис.2)
Тогда получим следующие координаты точек: В(0,0), А(a,0), М(x,y). Пусть a=3 опять для простоты рассуждений.
Тогда, пользуясь формулами расстояния между двумя точками, запишем:
Получили уравнение окружности с центром в точке (-1;0) и радиусом r=2.
Значение радиуса не случайно вспомним, что мы выбрали k=2.
Решая задачу в общем виде т.е. при условии ,что точка А имеет координаты (a;0) и k1 получим уравнение окружности в виде
.
Такая окружность называется окружностью Апполония. <Рисунок3>
Подводится итог урока. Выставляются оценки.