Тема: Обратные тригонометрические функции.
1. Функции. Определения. Графики и свойства
1.1 Функция у=arcsin x
Для тригонометрической функции Y = sin x, рассматриваемой в интервале , переход к однозначной обратной функции невозможен, так как одному значению у соответствует множество значений аргумента х. Поэтому обратная функция у = arcsin x при каждом значении х, лежащем на отрезке , имеет бесчисленное множество значений. При изучении функции, обратной синусу, выбирают отрезок , на котором функция Y= sin x возрастает, и рассматривают соответствующую этому отрезку обратную функцию у = аrcsin x, которую называют главным значением у = Arcsin x.
Определение 1. Обратной тригонометрической функцией у=arcsin x. называют дугу (угол) у, взятую на отрезке , синус которой равен х. ( Равенства у=Arcsin x и Х= sin у - эквивалентны).
Основные свойства функции у = аrcsin x.
1. Функция у = аrcsin x определена на отрезке, D(у).
2. На отрезке функция у = аrcsin x возрастает, E(у).
3. Функция у = аrcsin x нечетная, аrcsin (-x) = -аrcsin (x).
4. Функция у= аrcsin x называется главным значением у = arcsin x. Все значения дуг (углов) синус которых равен х, определяются формулой
Аrcsin x =(-1), где n . (1.1)
1.2. Функция у= arccos x.
Определение 2. Обратной тригонометрической функцией у=arccos x называют дугу (угол) у, взятую на отрезке , косинус которой равен х. (Равенство у=arccos x и cos y=x эквивалентны).
Основные свойства функции у=аrccos x.
1. Функция у=аrccos x определена на отрезке, D(у).
2. На отрезке функция у=аrccos x возрастает, E(у).
3. Функция у=аrccos x свойством нечетности и четности не обладает, справедливо равентсво arccos (-x) =
4. Функция у= аrccos x называется главным значением у= Аrccos x. Все значения дуг(углов)косинус которых равен х, определяются формулой
Аrcсos x =, где n . (1.2)
1.3 Функция у= arctg x
Определение 3. Обратной тригонометрической функцией у=arctg x. называют дугу (угол) у, взятую на отрезке , тангенс которой равен х. ( Равенства у=arctg x и Х= tg у - эквивалентны).
Основные свойства функции у = аrctg x.
1. Функция у=аrctg x определена на отрезке , D(у)= .
2. На отрезке функция у=аrctg x возрастает, E(у) .
3. Функция у = аrctg x нечетная, аrctg (-x) = -аrctg (x).
4.Функция у = аrctg x называется главным значением функции у = Аrctg x. Все значения дуг (углов) синус которых равен х, определяются формулой x
Аrctg x =, где n . (1.3)
1.4 Функция у= arcctg x
Определение 4. Обратной тригонометрической функцией у=arcctg x называют дугу (угол) у, взятую на отрезке x , котангенс которой равен х. (Равенства у=arcсtg x и Х= сtg у – эквивалентны).
Основные свойства функции у=аrcсtg x.
1. Функция у = аrcctg x определена на отрезке , D(у)= .
2. На отрезке функция у = аrcсtg x убывает, E(у)=
3. Функция у = аrсctg x не обладает ни свойством четности, ни свойством нечетности, но для нее справедливо arcctg (-x)=
4.Функция у = аrcctg x называется главным значением у = Аrcctg x. Все значения дуг (углов) котангенс которых равен х, определяются формулой x
Аrcсtg x =, где n . (1.4)
2. Основные соотношения для обратных тригонометрических функций:
sin(arcsinx)=x, если (2.1)
cos(arccosx)=x, если (2.2)
tg(arctgx)=x, если (2.3)
ctg(arcctgx)=x, если (2.4)
arcsin(sinx)=x, если (2.5)
arcos(cosx)=x, если (2.6)
arctg(tgx)=x, если (2.7)
arcctg(ctgx)=x, если (2.8)
3. Применение свойств обратных тригонометрических функций.
Решая различные вычислительные задачи с обратными тригонометрическими функциями, я подразделила их на следующие:
1) Вычисление значений обратных тригонометрических функций разными способами: применяя свойства функций, тригонометрические формулы и графический способ. (Эти вопросы я рассматриваю в данной статье).
2) Решение уравнений, неравенств и систем, содержащих обратные тригонометрические функции.
3) Построение графиков, содержащих обратные тригонометрические функции.
4) Решение уравнений, систем, неравенств с параметром.
3.1 Вычислите:
1).
Дополнительно:
6).
7).
9)
3.1. Учитывая область значений аркфункций и формулы 2.5-2.8 , вычислите:
График фигуры Y=Arccos(cosx) .
главный- arccos(cosx)=x, если
y(10)= 4?-10 12,56-10=2,56, 2,56.(При условии, что )
12) arcsin(sin6)=
График фигуры Y=Arcsin(sin(x)) в приложении №1.
Учитывая, что главный арксинус имеет область значений тогда
arcsin(sinx)=x, если
Ответ: arcsin(sin6)=.
13) arctg(tg. Учитывая, что y=tgx имеет период , то
Ответ:.
Дополнительно:
14) ,
15) arcos(cos8)=3-8
16) arctg(tg4)=4-.
Для вычисления значений некоторых обратных тригонометрических функций удобно пользоваться следующими формулами
Докажем, данные формулы.
1) , .
2) arcsin z=, arccos z=.
4) Учитывая пункт 2), получим :
.
Аналогично доказывается и второе равенство.
3.2 Вычислить:
17)
Решение: ,
?-3 + arcos(sin3) = ,
Ответ: arcos(sin3) =3- .
18) Решение: arctg(tg)+arcctg(ctg)=,
arctg(tg)+ =,
Ответ: arctg(tg)= - .
Дополнительно:
19);
20);
21);
22) .
3.3. Вычислить, используя формулы двойного, тройного и половинного аргумента.
Дополнительно:
28) sin(2arctg3)=
29)