ЦЕЛИ: 1) рассмотреть графики функций y=f(x), y=kf(x), y=f(x)+n, y=f(x-m) и y=f(x-m)+n и их свойства, используя ПК и программу Advanced Grapher;
2)расширить представления о преобразованиях графиков более сложных функций;
3)способствовать развитию у учащихся навыков чтения графиков и построения графиков функций.
I. Новый материал – объяснительная лекция.
Графики функций широко используются в различных областях инженерных знаний, поэтому умение строить, “читать”, прогнозировать их “поведение” имеют огромную роль в практической деятельности инженерных работников, гидро, метеорологов и людей других “математических” специальностей.
Выясним, какая связь существует между графиками функций y = f(x) и y = kf(x), где k-число, не равное нулю.
Пусть графиком функции y = f(x), область определения которой- промежуток[-2;4],является кривая, изображённая на рис.1а f(x) = x(x-3)(x+1).
Рассмотрим сначала случай, когда k>1.Построим
график функции y = kf(x), где k=2. Для этого расстояние
каждой точки графика функций y = f(x) от оси X
увеличим в 2раза, т.е.умножим её ординату на 2.
Построение выполним с помощью программы Advanced
Grapher, набрав формулу функции F1 с клавиатуры.
Заметим, что точки с абсциссами 0; 3; -1,
принадлежащие оси Х, останутся на месте, т.к.их
ординаты равны нулю (0*2х = 0).Все остальные точки
графиков у1, и у, имеющие одинаковые
абсциссы, будут лежать соответственно на
перпендикулярах к оси Х, причём каждая точка
графика функции у= 2f(x)
будет находиться от оси Х на расстоянии в 2 раза
большем, чем соответственная точка графика
функции y = f(x). (рис. 1б).
Рассмотрим теперь случай, когда О < k < 1,
например k =, и
построим график функции y
= kf (x), при k =
, используя программу Advanced Grapher.
Опять же заметим, что точки с абсциссами -1; 0 и 3,
принадлежащие оси Х, останутся на месте ( 0* = 0 ), а каждая точка
графика функции y
=
f (x), будет
находиться от оси Х на расстоянии в 2 раза
меньшем, чем соответственная точка графика
функции y = f(x) (рис.1в).
Делаем вывод о том, что график функции y = f(x) при k
< 1 можно получить из графика функции y = f(x)
растяжением от оси Х исходного графика в k раз, а
при О < k < 1- сжатием к оси Х графика функции y =
f(x) в раз.
И рассмотрим случай, когда k< 0. Ограничимся
значением k = -1, т.е. выясним, как можно построить
график функции y= -f(x),
зная график функции y = f(x).
Задав с клавиатуры формулу графика y = -f(x) и
получив соответствующее изображение на экране (рис. 1г), заметим, что каждой точке
графика y, кроме точек с
абсциссами -1; 0 и 3, соответствует точка графика y =
f(x) с противоположной ординатой.
Соответственно делаем вывод, что график функции y = -f(x) можно получить с помощью симметрии относительно оси Х.
Аналогично, графики функций y = kf(x) и y = -kf(x) при
любом k0 симметричны
относительно оси Х.
Иначе говоря, чтобы построить график функции y = kf(x), где k < 0, можно сначала построить график функции y = -kf(x), где -k > 0, а затем отобразить его симметрично относительно оси Х.
Выясним, как связаны между собой графики функций y = f(x) и y = f(x)+n, где n –произвольное число.
Рассмотрим графики функций y = x, y
= x
- 4 , y
= x
-4, y
= x
+
, y
= x
-
(рис. 2).
Рассматривать будем попарно графики функций у
и у(рис.2а),
у и y
(рис.2б),
у и y
(рис.2в),
у и y
(рис.2г).
Моментальное построение графика каждой из выше
указанных функций даст возможность сделать
вывод, что график функции y = f(x) + n можно получить
из графика функции y = f(x) с помощью сдвига вдоль
оси Y на n единиц вверх, если n>0, или на единиц вниз, если
n<0.
Выясним теперь, как связаны между собой графики функций y = f(x) и y = f(x-m), где m – произвольное число.
Рассмотрим графики функций y = (x-3), y = (x+2)
, y
= (x
)
, y
= (x+
)
.
Получаем рис.3 и делаем вывод, что
график функции y = f(x) можно получить с помощью
сдвига вдоль оси Х на m единиц вправо, если m>0,
или на единиц
влево, если m<0.
Из курса алгебры VII класса известно, что график
функции y = x (парабола)
симметричен относительно ось У. Точку
пересечения параболы с осью симметрии называют
вершиной параболы.
Построим, используя программу Advanced Grapher, в одной
системе координат графики функций y = x, у
== x
+2, y
= (х-3)
и y
= (х-3)
+2 ( рис.4).
Учащимся наглядно видно, что у параболы у== x
+2 осью симметрии является ось У, а у
параболы y
= (х-3)
- прямая х = 3. Графиком же
функции y
= (х-3)
+2 является парабола с
вершиной в точке (3;2) и осью симметрии её является
прямая х = 3.
Из наглядного наблюдения учащиеся видят, что
при построении графика функции у = (х-3) +2 нужно последовательно
выполнить два параллельных переноса: один в
направлении оси У на 2 единицы вверх, а другой в
направлении оси Х на 3 единицы вправо.
Делаем вывод, что графиком функции вида у = (х-m) +n является парабола с
вершиной в точке А(m;n) .А также обобщаем выше
рассмотренные преобразования графиков и делаем
вывод, что график функции y = f(x-m)+n может быть
получен из графика функции y=f(x) в результате
последовательно выполненных двух параллельных
переносов: сдвига вдоль оси Х на m единиц и сдвига
графика функции у = (х-m)
вдоль оси У на n единиц.
II. Закрепление.
У: Изобразите на координатной плоскости заданные точки и определите, используя обороты “выше на…” и “ниже…”, взаимное расположение соответствующих точек:
а) А(-1;7) и А1(-1;10) б) В(2;7) и В1(2;5) в) С (0;-6) и С1(0;-5) г) Д (3;-4) и Д1(3;-7) .
У: Как найти расстояние между точками, имеющими одинаковые ординаты? Закончите предложение: “Если точки имеют одинаковые ординаты, то расстояние между ними равно…”
Обучающая исследовательская работа.
(карточки-распечатки см. Приложение 1)
I вариант.
1. Заданы функции y = f(x) и y = f(x) + 2. заполните таблицу значений этих
функций и сделайте вывод о взаимном расположении
точек данных функций и их графиков:
|
1 |
2 |
4 |
6 |
7 |
y=f(x) |
5 |
7 |
-5 |
||
y=f(x)+2 |
3 |
-11 |
Д: Любая точка графика y = f(x)+2 с абсциссой X находится на 2 единицы
“выше”, чем точка графика y = f(x) с той же самой
абсциссой; а график функции y
= f(x)+2 можно получить из графика y = f(x)
параллельным переносом вдоль оси ординат на 2
единицы “вверх”.
II вариант.
1. Заданы функции y = f(x) и y = f(x) – 3. заполните таблицу значений этих функций и сделайте вывод о взаимном расположении точек данных функций и их графиков:
|
0 |
1 |
3 |
5 |
9 |
y=f(x) |
4 |
-6 |
5 |
||
y=f(x)-3 |
-3 |
0 |
Д: Любая точка графика y = f(x)-3 с абсциссой X находится на 3 единицы
“ниже”, чем точка графика y = f(x) с той же самой
абсциссой; а график функции y
=f(x)-3 можно получить из графика y = f(x)
параллельным переносом вдоль оси ординат на 3
единицы “вниз”.
У: С помощью какого преобразования можно
получить график функции y = f(x)+a, а0 из графика функции y = f(x).
Д: Обобщённый вывод (записать в тетрадь): График
функции y1= f(x)+a, а0 можно получить из графика функции y = f(x)
параллельным переносом вдоль оси ординат на
единиц “вниз”,
если а<0, и на
единиц “вверх”, если а>0.
У: Пусть даны графики функций y = f(x) и y = f(x)+7. Известно, что один из
них проходит через начало координат. Определите
точку пересечения другого графика с осью
ординат.
Д: A (0;7) или А (0;-7).
У: Пусть даны графики функций y = f(x) и y = f(x)+c. Известно, что один из
них проходит через точку А(-11;231) и другой через
точку А
(-11;132). Найдите
все возможные значения С.
Д: 99 или -99.
I вариант.
2. Постройте графики функций, используя
известный график y = kx:
a) y = x-4 ; б) у =
x
+1;
в) у = 2 x
-1.
3.
II вариант.
2. Постройте графики функций, используя
известный график y = kx:
а) у = -x+3; б) у = -0,5x
+2; в) у = -2x
-3.
3.
У: Изобразите на координатной плоскости заданные точки и определите, используя обороты “левее на …” и “правее на …” взаимное расположение следующих точек:
а) А (-1;7) и А (6;7) б) С (8;-6)
и С
(14;-6) в) В (2;3) и В
(-2;3) г) Д (-13;_4) и Д
(-3;-4).
У: Как найти расстояние между точками, имеющими одинаковые абсциссы? Закончите предложение: “Если точки имеют одинаковые абсциссы, то расстояние между ними равно…”
I, II вариант.
4. Заданы функции y=f(x), y=
f(x+2) и y
= f(x-3). Заполните
таблицу значений этих функций:
У: Как взаимно расположены точки графиков
функций y = f(x) и y = f(x+2)?
Каким образом можно получить график функции y= f(x+2) из графика функции y =
f(x)?
Д: Любая точка графика y=
f(x+2) с абсциссой х
-2
находится на 2 единицы “левее”, чем точка
графика y=f(x) с абсциссой х
, а график функции y
= f(x+2) можно получить из графика y = f(x),
“сдвинув” его на 2 единицы влево вдоль оси
абсцисс.
У: Как взаимно расположены точки графиков
функций y = f(x) и y= f(x-3)?
Каким образом можно получить график функции y= f(x-3) из графика функции y =
f(x)?
Д: Любая точка графика y= f(x-3) с абсциссой х
+3
находится на 3 единицы “правее”, чем точка
графика y = f(x) с абсциссой х
, а график функции y
= f(x-3) можно получить из графика функции y =
f(x) “сдвинув” его на 3 единицы вправо вдоль оси
абсцисс.
У: Попытайтесь сделать вывод о том как можно
получить график функции y= f(x+а) из графика функции y = f(x)?
Д: График функции y=
f(x+а) можно получить из графика функции y = f(x),
“сдвинув” его на
единиц вправо вдоль оси абсцисс, если
а<0, и на
единиц влево вдоль оси абсцисс, если а>0.
У: Пусть даны графики функций y = f(x) и y= f(x+7). Известно, что один из
них проходит через начало координат. Какую точку
пересечения графика с осью абсцисс можно указать
наверняка?
Д: А(-7;0) и А (7;0).
У: Опишите как расположены относительно друг друга графики функций (задания 5-9 выполнены на карточках-распечатках, ответы в устной форме):
5. y = f(x-2) и y = f(x+7).
6. y = f(2x) и y = f(2x-4).
7. y = f(2x) и y = f(2x+1).
8. y = f(0,5x) и y = f(0,5x-4).
9. y = f() и . y = f(
-1).
III . Лабораторно-исследовательская работа.
(все задания выполнены на карточках-распечатках, ответы см. в приложении 2)
I вариант.
10. Постройте графики функций, используя программу Advanced Grapher :
а) у = (x-4). б) у =
(x+2)
.
11. Пусть дан график функции y=f(x). Как получить график функции y = f(x+3)-4?
12. Постройте графики функций, используя программу Advanced Grapher:
а) у = -4; б) у =
(x+3)
-4.
II вариант.
10. Постройте графики функций, используя программу Advanced Grapher :
а) у = 2(x-1), б) у = -(x+3)
.
11. Пусть дан график функции y=f(x). Как получить график функции y = f(x-5)+2?
12. Постройте графики функций, используя программу Advanced Grapher:
а) у =+2; б) у =(x-5)
+2.
III вариант.
10. Постройте графики функций, используя программу Advanced Grapher :
а) у = -0,5(x-4); б) у = (2x-3)
.
11. Пусть дан график функции y = f(x). Как получить график функции y = f(x+1)+3?
12. Постройте графики функций, используя программу Advanced Grapher:
а) у =+3; б) у =
(x+1)
+3.
IV вариант.
10. Постройте графики функций, используя программу Advanced Grapher :
а) у = 4x+4х+1; б) у = -
-х-1.
11. Пусть дан график функции y=f(x). Как получить график функции y = f(x-2)-1?
12. Постройте графики функций, используя программу Advanced Grapher:
а) у =-1; б) у =
(x-2)
-1.