Цели урока:
Образовательные: Рассмотреть понятие системы координат и координаты точки в пространстве; вывести формулу расстояния в координатах; вывести формулу координат середины отрезка.
Развивающие: Способствовать развитию пространственного воображения учащихся; способствовать выработке решения задач и развития логического мышления учащихся.
Воспитательные: Воспитание познавательной активности, чувства ответственности, культуры общения, культуры диалога. Оборудование: Чертежные принадлежности, кристаллическая решетка соли.
Тип урока: Урок изучения нового материала (2 часа).
Структура урока:
- Организационный момент.
- Введение.
- Сообщение целей урока.
- Мотивация.
- Актуализация.
- Изучение нового материала.
- Осмысление и осознание.
- Закрепление.
- Итог урока.
Опережающее задание: подготовить доказательство теорем и вывод формул, сообщение о Рене Декарте.
Технология обучения: Технология программированного обучения (блочное обучение).
Ход урока
1. Организационный момент. Добрый день.
2. Введение.
Сегодня на уроке мы начинаем изучать четвертый блок курса геометрии 10 класса “Декартовы координаты и векторы в пространстве”.
Знакомство с таблицей четвертого блока (таблица лежит на каждой парте).
10 класс. Декартовы координаты и векторы в пространстве. Блок № 4
Количество часов - 18 часов
Наименование тем | Теория (учебник) |
Практикум | Самостоятельная работа | Зачет по теории | Контрольные работы |
Введение: Декартовы координаты в
пространстве. Расстояние между точками. Координаты середины отрезка. |
П.152
П.153 П.154 |
Практическая работа №6 | Самостоятельная работа №5 | Геометрический диктант. | Домашняя контрольная работа №4 Классная контрольная работа №4 |
Симметрия. Параллельный перенос. Движение. Подобие. |
П.155,п.156 П.158 П.157 П.159 |
Практическая работа №7 |
Самостоятельная работа №6 |
Зачетная карточка №3 | Домашняя контрольная работа №5 Классная контрольная работа №5 |
Угол между: - Скрещивающими прямыми; - Прямой и плоскостью; - Плоскостями. 9. Площадь ортогональной проекции многоугольника. |
П.160 П.161 П.162 П.163 |
Практическая работа №8 | Зачетная карточка №4 | ||
Векторы в пространстве. | П.164 П.165 |
Практическая работа №9 | Зачетная карточка№5 |
Какую тему созвучную с темой нашего урока мы изучали в 8 классе? Какое ключевое слово определяют эти две темы? (Координаты). Координаты на плоскости и в пространстве можно вводить бесконечным числом различных способов.
Решая геометрическую, физическую, химическую задачу можно использовать различные координатные системы: прямоугольную, полярную, цилиндрическую, сферическую. (Показ моделей кристаллической решётки поваренной соли)
В общеобразовательном курсе изучается прямоугольная система координат на плоскости и в пространстве. Иначе её называют Декартовой системой координат по имени французского ученого философа Рене Декарта (1596 – 1650) впервые введшего координаты в геометрию.
(Рассказ ученика об Рене Декарте.)
Рене Декарт родился в 1596 г. в городе Лаэ на юге Франции, в дворянской семье. Отец хотел сделать из Рене офицера. Для этого в 1613 г. он отправил Рене в Париж. Много лет пришлось Декарту пробыть в армии, участвовать в военных походах в Голландии, Германии, Венгрии, Чехии, Италии, в осаде крепости гугенотов Ла-Рошали. Но Рене интересовала философия, физика и математика. Вскоре по приезде в Париж он познакомился с учеником Виета, видным математиком того времени — Мерсеном, а затем и с другими математиками Франции. Будучи в армии, Декарт все свое свободное время отдавал занятиям математикой. Он изучил алгебру немецких, математику французских и греческих ученых.
После взятия Ла-Рошали в 1628 г. Декарт уходит из армии. Он ведет уединенный образ жизни с тем, чтобы реализовать намеченные обширные планы научных работ.
Философские взгляды Декарта не соответствовали требованиям католической церкви. Поэтому он переселился в Голландию, где прожил 20 лет, с 1629 по 1649 г., но из-за гонений протестантской церкви в 1649 г. переехал в Стокгольм. Но суровый северный климат Швеции оказался для Декарта губительным, и он умер от простуды в 1650 г.
Декарт был крупнейшим философом и математиком своего времени. В основе его философии лежал материализм. Самым известным трудом Декарта является его “Геометрия”. Декарт ввел систему координат, которой пользуются все и в настоящее время. Он установил соответствие между числами и отрезками прямой и таким образом ввел алгебраический метод в геометрию. Эти открытия Декарта дали огромный толчок развитию как геометрии, так и другим разделам математики, оптики. Появилась возможность изображать зависимость величин графически на координатной плоскости, числа - отрезками и выполнять арифметические действия над отрезками и другими геометрическими величинами, а также различными функциями. Это был совершенно новый метод, отличавшийся красотой, изяществом и простотой. [2]
Р. Декарт — французский ученый (1596— 1650)
3. Сообщение цели урока.
Сегодня на уроке мы продолжим изучение декартовой системы координат, и покажем, что координаты в пространстве вводятся также просто, как и координаты на плоскости.
4. Мотивация.
В своё время Рене Декарт сказал: “… потомки будут благодарны мне не только за то, что я сказал, но и за то, что я не сказал и тем самым дал им возможность и удовольствие додуматься до этого самостоятельно”. Я предоставлю вам возможность и удовольствие разобраться с декартовой системой координат самостоятельно.
5. Изучение нового материала.
Пояснение. Технология блочного изучения предусматривает изучение нескольких тем на уроке. На уроке будет рассмотрено три темы. Каждая тема будет содержать следующую структуру:
- Изучение нового материала (изучение построено на основе сравнительного анализа основных понятий и формул рассмотренных в планиметрии и доказательстве необходимых теорем);
- Осознание и осмысление.
На основе известного вам материала за 8 класс, мы с вами заполним таблицу. Сделаем сравнительную характеристику.
(На доске нарисована таблица, её необходимо заполнить вместе с учениками. Рассмотреть основные понятия декартовых координат, формулу расстояния между точками, формулы координат середины отрезка на плоскости, и попытаться учащимся самим сформулировать основные понятия и формулы в пространстве)
На плоскости | В пространстве |
Определение. | Определение. |
2 оси, ОУ- ось ординат, ОХ- ось абсцисс |
3 оси, ОХ - ось абсцисс, ОУ – ось ординат, ОZ - ось аппликат. |
ОХ перпендикулярна ОУ
|
ОХ перпендикулярна ОУ, ОХ перпендикулярна ОZ , ОУ перпендикулярна ОZ. |
(О;О) | (О;О;О) |
Направление, единичный отрезок | Направление, единичный отрезок |
Расстояние между точками. | Расстояние между точками. d = v (х2 - х1 )? + (у2 - у1 )? + (z2 – z1 )? |
Координаты середины отрезка. | Координаты середины отрезка. |
Для беседы используются рисунки:
Вопросы для заполнения первой части таблицы.
1. Сформулируйте определение декартовой системы координат?
2. Попробуйте сформулировать определение декартовой системы координат в пространстве?
3. Назовите оси координат на плоскости? Назовите оси координат в пространстве? Название, какой оси мы не изучали? (Знакомство с новым словом “аппликата”)
4. Какие плоскости рассматриваются в планиметрии (в пространстве)?
5. Назовите координату начала координат на плоскости (в пространстве)?
6. Какие еще компоненты должна иметь система координат на плоскости и в пространстве?
7. Как задается координата точки на плоскости и в пространстве?
Вывод:
Расскажите, как вводится, декартова система координат в пространстве и из чего она состоит?
При беседе построить рисунок фронтально-диметрической проекции осей.
Рассмотреть положение осей в соответствии с черчением.
Построить точку с заданными координатами А (2; - 3).
Построить точку с заданными координатами А (1; 2; 3 ).
Рассмотреть построение на доске. Работа по карточкам (2 человека у доски).
Работа с классом: задача № 3 из учебника, страница 287, устно. [1]
Вопросы для заполнения второй части таблицы.
1. Запишите формулу расстояния между точками на плоскости.
2. Как бы вы записали формулу расстояния между точками в пространстве?
Докажем её справедливость (вывод формулы - п. 154, стр. 273) [1]
Опережающее задание - вывод формулы на доске учащимся.
Работа по карточкам 2 человека у доски.
Найти длину отрезка:
- А (1;2;3;) и В (-1; 0; 5)
- А (1;2;3) и В (х; 2 ;-3)
Работа с классом: Задача № 5 на странице 288 [1].
Вопросы для заполнения третьей части таблицы.
1. Как запишется формулы координат середины отрезка?
2. Как бы вы записали формулы координат середины отрезка?
Докажем её справедливость (вывод формулы п. -154 стр., 273) [1].
Опережающее задание - вывод формулы координат середины отрезка у доски.
Работа с классом. Устно.
Найдите координаты точки М - середины отрезка
А(2;3;2), В (0;2;4) и С (4;1;0)
- АС
- АВ
- Является ли точка В серединой отрезка АС?
Работа с классом: Задача № 9 страница 288. [1]
Закрепление.
Практикум: Решение задач (Практическая работа).
Во время решения задач - опрос учащихся по предыдущим темам и вновь изученному материалу (доказательство теорем).
Домашнее задание: учить п. 152, 153,154 , вопросы 1 – 3, задачи 3, 4, 6, 10, подготовиться к геометрическому диктанту. [1]
Итог урока.
- Как вводится, декартова система координат? Из чего она состоит?
- Как определяются координаты точки в пространстве?
- Чуму равна координата начала координат?
- Чему равно расстояние от начала координат до заданной точки?
- Назовите формулу координат середины отрезка и расстояния между точками в пространстве?
Оценивание (учитель самостоятельно выставляет оценки за работу на уроке и объявляет их учащимся).
Организационный момент. Спасибо за урок. До свидания.
Литература.
- А.В. Погорелов. Учебник 7-11. М. “Просвещение”, 19992-2005г.г.
- И.С. Петраков. Математические кружки в 8-10 классах. М, “Просвещение”, 1987 г.