Египетский треугольник

Разделы: Математика


Очень важно, чтобы материал, с которым учащиеся познакомятся на уроке, вызвал у них интерес.

О теореме Пифагора

Уделом истины не может быть забвенье,
Как только мир ее увидит взор,
И теорема та, что дал нам Пифагор,
Верна теперь, как в день ее рожденья.
За светлый луч с небес вознес благодаренье
Мудрец богам не так, как было до тех пор.
Ведь целых сто быков послал он под топор,
Чтоб их сожгли как жертвоприношенье.

Быки с тех пор, как только весть услышат,
Что новой истины уже следы видны,
Отчаянно мычат и ужаса полны:
Им Пифагор навек внушил тревогу.
Не в силах преградить той истине дорогу,
Они, закрыв глаза, дрожат и еле дышат.
(А. фон Шамиссо, перевод Хованского)

Пифагор, VI в. до н. э. (580 – 500), древнегреческий философ и математик. Первым заложил основы математики как науки, имел свою школу (школа Пифагора). Ему приписывают и открытие так называемой теоремы Пифагора, хотя геометрическая интерпретация этой проблемы была известна и раньше.

Задача на смекалку

Поликрат (известный из баллады Шиллера тиран с острова Самос) однажды спросил на пиру у Пифагора, сколько у того учеников. “Охотно скажу тебе, о Поликрат, - отвечал Пифагор. – Половина моих учеников изучает прекрасную математику. Четверть исследует тайны вечной природы. Седьмая часть молча упражняет силу духа, храня в сердце учение. Добавь еще к ним трех юношей, из которых Теон превосходит прочих своими способностями. Столько учеников веду я к рождению вечной истины”. Сколько учеников было у Пифагора?

РЕШЕНИЕ:

Пусть х – число учеников Пифагора.

По условию задачи составим уравнение:

ОТВЕТ: 28 учеников.

Начнем урок в школе Пифагора.

1. Практическая работа

(Несколько человек работают у доски, остальные в тетрадях).

Задание 1. Построить треугольник по трем сторонам, если стороны равны.

а) 3, 4, 5;

б) 6, 8, 10;

в) 5, 12, 13 (единицы измерения указывать не обязательно).

Задание 2. Измерить больший угол этих треугольников.

Ответы близки к 90о.

Учитель предлагает внимательно посмотреть на построенные треугольники, найти отличия и определить, чем эти треугольники похожи друг на друга. Класс постепенно находит нужную формулировку: “Если треугольник имеет стороны a, b, c и a2+b2=c2, то угол, противолежащий стороне с, прямой”.

Доказательство этой теоремы – обратной к теореме Пифагора.

2. Устная работа

1) в прямоугольном треугольнике гипотенуза и катет соответственно равны 13 и 5. Найдите второй катет.

2) в прямоугольном треугольнике катеты равны 1,5 и 2. Найдите гипотенузу.

3) определите вид треугольника, стороны которого равны 6, 8, 10.

3. Практическая работа

На тонкой веревке делают метрии, делящие ее на 12 равных частей, связывают концы, а затем растягивают веревку в виде треугольника со сторонами 3, 4, 5. Тогда угол между сторонами 3 и 4 оказывается прямым.

ВЫВОД: если стороны треугольника пропорциональны числам 3, 4 и 5, то этот треугольник прямоугольный.

Учитель говорит учащимся, что этот факт использовался египтянами для построения на местности прямых углов – ведь оптических измерительных приборов тогда еще не было, а для строительства домов, дворцов и тем более гигантских пирамид надо было уметь строить прямые углы.

(Звучит музыка. Демонстрация слайдов с изображением античных дворцов, храмов, египетских пирамид).

Перед тем как перейти к следующему этапу урока, ученики вместе с учителем еще раз делают вывод, что безошибочность построения прямых углов следует из теоремы, обратной к теореме Пифагора. Проверяют еще раз эту теорему на треугольнике со сторонами 3, 4, 5: 32 + 42 = 52. Далее можно сказать, что в общем виде уравнение записывается следующим образом: а2 + b2 = с2. Необходимо проверить есть ли еще корни у этого уравнения.

Учащиеся проверяют этот факт. Прямоугольными являются также треугольники со сторонами:

  • 5, 12, 13;
  • 8, 15, 17;
  • 7, 24, 25.

Далее учитель сообщает, что прямоугольные треугольники, у которых длины сторон выражаются целыми числами, называются пифагоровыми треугольниками.

Учитель предлагает тем учащимся, которых заинтересовала данная тема, дома доказать, что катеты a, b и гипотенуза с таких треугольников выражаются формулами:

а = 2mn, b = m2 - n2, c = m2 + n2,

где m и n – любые натуральные числа, такие, что m > n.

В финале урока уместно прочитать известные стихи, посвященные теореме Пифагора.

Теорема Пифагора

Если дан нам треугольник,
И притом с прямым углом,
То квадрат гипотенузы
Мы всегда легко найдем:
Катеты в квадрат возводим,
Сумму степеней находим –
И таким простым путем
К результату мы придем.
(И. Дырченко)