Отношение длины окружности к ее диаметру одно и то же для всех окружностей. Это отношение принято обозначать греческой буквой (“пи” - начальная буква греческого слова , которое и означало “окружность”).
Архимед в сочинении “Измерение круга” вычислил отношение длины окружности к диаметру (число ) и нашел, что оно заключено между 3 10/71 и 3 1/7.
Долгое время в качестве приближенного значения использовали число 22/7, хотя уже в V веке в Китае было найдено приближение 355/113 = 3,1415929..., которое было открыто вновь в Европе лишь в XVI веке.
В Древней Индии считали равным = 3,1622….
Французский математик Ф. Виет вычислил в 1579 г. с 9 знаками.
Голландский математик Лудольф Ван Цейлен в 1596 г. публикует результат своего десятилетнего труда – число , вычисленное с 32 знаками.
Но все эти уточнения значения числа производились методами, указанными еще Архимедом: окружность заменялась многоугольником со все большим числом сторон. Периметр вписанного многоугольника при этом был меньше длины окружности, а периметр описанного многоугольника – больше. Но при этом оставалась неясным, является ли число рациональным, т. е. отношением двух целых чисел, или иррациональным.
Лишь в 1767 г. немецкий математик И.Г. Ламберт доказал, что число иррационально.
А еще через сто с лишним лет в 1882 г. другой немецкий математик – Ф. Линдеман доказал его трансцендентность, что означало и невозможность построения при помощи циркуля и линейки квадрата, равновеликого данному кругу.
Простейшее измерение
Начертим на плотном картоне окружность диаметра d (=15 см), вырежем получившийся круг и обмотаем вокруг него тонкую нить. Измерив длину l (=46,5 см) одного полного оборота нити, разделим l на длину диаметра d окружности. Получившееся частное будет приближенным значением числа , т. е. = l / d = 46,5 см / 15 см = 3,1. Данный довольно грубый способ дает в обычных условиях приближенное значение числа с точностью до 1.
Измерение с помощью взвешивания
На листе картона начертим квадрат. Впишем в него круг. Вырежем квадрат. Определим массу картонного квадрата с помощью школьных весов. Вырежем из квадрата круг. Взвесим и его. Зная массы квадрата mкв (=10 г) и вписанного в него круга mкр (=7,8 г) воспользуемся формулами
где p и h –соответственно плотность и толщина картона, S – площадь фигуры. Рассмотрим равенства:
Отсюда
Естественно, что в данном случае приближенное значение зависит от точности взвешивания. Если взвешиваемые картонные фигуры будут довольно большими, то возможно даже на обычных весах получить такие значения масс, которые обеспечат приближение числа с точностью до 0,1.
Суммирование площадей прямоугольников, вписанных в полукруг
Рисунок 1
Пусть А (a; 0), В (b; 0). Опишем на АВ полуокружность как на диаметре. Разделим отрезок АВ на n равных частей точками x1, x2, ..., xn-1 и восстановим из них перпендикуляры до пересечения с полуокружностью. Длина каждого такого перпендикуляра – это значение функции f(x)= . Из рисунка 1 ясно, что площадь S полукруга можно вычислить по формуле
S = ( b – a ) (( f(x0) + f(x1) + … + f(xn-1)) / n.
В нашем случае b=1, a=-1. Тогда = 2 S.
Значения будут тем точнее, чем больше точек деления будет на отрезке АВ. Облегчить однообразную вычислительную работу поможет компьютер, для которого ниже приводится программа 1, составленная на Бейсике.
Программа 1REM "Вычисление пи"
REM "Метод прямоугольников"
INPUT "Введите число прямоугольников", n
dx = 1 / n
FOR i = 0 TO n - 1
f = SQR(1 - x ^ 2)
x = x + dx
a = a + f
NEXT i
p = 4 * dx * a
PRINT "Значение пи равно ", p
END
Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:
n |
1000 |
2000 |
3000 |
4000 |
5000 |
6000 |
|
3.292 |
3.216 |
3.190667 |
3.181 |
3.1848 |
3.192 |
n |
7000 |
8000 |
9000 |
10000 |
11000 |
12000 |
|
3.193714 |
3.1935 |
3.192889 |
3.196 |
3.192 |
3.193667 |
Метод Монте-Карло
Это фактически метод статистических испытаний. Свое экзотическое название он получил от города Монте-Карло в княжестве Монако, знаменитого своими игорными домами. Дело в том, что метод требует применения случайных чисел, а одним из простейших приборов, генерирующих случайные числа, может служить рулетка. Впрочем, можно получить случайные числа и при помощи …дождя.
Для опыта приготовим кусок картона, нарисуем на нем квадрат и впишем в квадрат четверть круга. Если такой чертеж некоторое время подержать под дождем, то на его поверхности останутся следы капель. Подсчитаем число следов внутри квадрата и внутри четверти круга. Очевидно, что их отношение будет приближенно равно отношению площадей этих фигур, так как попадание капель в различные места чертежа равновероятно. Пусть Nкр – число капель в круге, Nкв – число капель в квадрате, тогда
= 4 Nкр / Nкв.
Рисунок 2
Дождь можно заменить таблицей случайных чисел, которая составляется с помощью компьютера по специальной программе. Каждому следу капли поставим в соответствие два случайных числа, характеризующих его положение вдоль осей Ох и Оу. Случайные числа можно выбрать из таблицы в любом порядке, например, подряд. Пусть первое четырехзначное число в таблице 3265. Из него можно приготовить пару чисел, каждое из которых больше нуля и меньше единицы: х=0,32, у=0,65. Эти числа будем считать координатами капли, т. е. капля как будто попала в точку (0,32; 0,65). Аналогично поступаем и со всеми выбранными случайными числами. Если окажется, что для точки (х; у) выполняется неравенство, то, значит, она лежит вне круга. Если х + у = 1, то точка лежит внутри круга.
Для подсчета значения снова воспользуемся формулой (1). Ошибка вычислений по этому методу, как правило, пропорциональна , где D – некоторая постоянная, а N –число испытаний. В нашем случае N = Nкв. Из этой формулы видно: для того чтобы уменьшить ошибку в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N, т. е. объем работы, в 100 раз. Ясно, что применение метода Монте-Карло стало возможным только благодаря компьютерам. Программа 2 реализует на компьютере описанный метод.
Программа 2REM "Вычисление пи"
REM "Метод Монте-Карло "
INPUT "Введите число капель ", n
m = 0
FOR i = 1 TO n
t = INT(RND(1) * 10000)
x = INT(t \ 100)
y = t - x * 100
IF x ^ 2 + y ^ 2 < 10000 THEN m = m + 1
NEXT i
p = 4 * m / n
PRINT "значение пи равно"; p
END
Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:
n | 1000 |
2000 |
3000 |
4000 |
5000 |
6000 |
3.14357 |
3.14253 |
3.14231 |
3.14214 |
3.14212 |
3.14206 |
|
n | 7000 |
8000 |
9000 |
10000 |
11000 |
12000 |
3.14184 |
3.14197 |
3.14193 |
3.14169 |
3.14203 |
3.14193 |
Метод “падающей иголки”
Возьмем обыкновенную швейную иголку и лист бумаги. На листе проведем несколько параллельных прямых так, чтобы расстояния между ними были равны и превышали длину иголки. Чертеж должен быть достаточно большим, чтобы случайно брошенная игла не упала за его пределами. Введем обозначения: а- расстояние между прямыми, l – длина иглы.
Рисунок 3
Положение случайным образом брошенной на чертеж иглы (см. рис. 3) определяется расстоянием Х от ее середины до ближайшей прямой и углом j , которой игла образует с перпендикуляром, опущенным из середины иглы на ближайшую прямую (см. рис. 4). Ясно, что
Рисунок 4
На рис. 5 изобразим графически функцию y=0,5 cos . Всевозможные расположения иглы характеризуются точками с координатами (; у ) , расположенными на участке ABCD. Закрашенный участок AED – это точки, которые соответствуют случаю пересечения иглы с прямой. Вероятность события a – “игла пересекла прямую” – вычисляется по формуле:
Рисунок 5
Вероятность p(a) можно приблизительно определить многократным бросанием иглы. Пусть иглу бросали на чертеж c раз и p раз она упала, пересекая одну из прямых, тогда при достаточно большом c имеем p(a) = p / c. Отсюда = 2 l с / a k.
Замечание. Изложенный метод представляет собой вариацию метода статистических испытаний. Он интересен с дидактической точки зрения, так как помогает совместить простой опыт с составлением довольно сложной математической модели.
Вычисление с помощью ряда Тейлора
Обратимся к рассмотрению произвольной функции f(х). Предположим, что для нее в точке x0 существуют производные всех порядков до n-го включительно. Тогда для функции f(х) можно записать ряд Тейлора:
Вычисления с помощью этого ряда будут тем точнее, чем больше членов ряда будет задействовано. Реализовать данный способ, конечно, лучше всего на компьютере, для чего можно воспользоваться программой 3.
Программа 3REM "Вычисление пи"
REM "Разложение в ряд Тейлора "
INPUT n
a = 1
FOR i = 1 TO n
d = 1 / (i + 2)
f = (-1) ^ i * d
a = a + f
NEXT i
p = 4 * a
PRINT "значение пи равно"; p
END
Программа была набрана и запущена при различных значениях параметра n. Полученные значения числа записаны в таблице:
n |
1000 |
2000 |
3000 |
4000 |
5000 |
6000 |
3.22941 |
3.22841 |
3.22809 |
3.22792 |
3.22782 |
3.22776 |
|
n |
7000 |
8000 |
9000 |
10000 |
11000 |
12000 |
3.22771 |
3.22767 |
3.22765 |
3.22763 |
3.22761 |
3.22759 |
Выводы
В наши дни с помощью ЭВМ число вычислено с точностью до миллиона знаков, что представляет скорее технический, чем научный интерес, потому что такая точность никому не нужна. Десяти знаков числа ( = 3,141592653…) вполне достаточно для всех практических целей.
Есть очень простые мнемонические правила для запоминания значения числа :
“Это я знаю и точно использую на уроках” (3 буквы – 1 – 4 – 1 – 5 – 9 – 2 – 6);
“3-14-15-92 и 6”(Три, четырнадцать, пятнадцать, девяносто два и шесть).