Методика изучения показательных уравнений, неравенств и их систем

Разделы: Математика, Мастер-класс


В школьном курсе математики важное место отводится решению показательных уравнений и неравенств и системам, содержащие показательные уравнения. Впервые ученики встречаются с показательными уравнениями и неравенствами в 10 классе после того, как познакомятся с показательной функцией и ее свойствами, а системы, содержащие показательные уравнения и неравенства в 11 классе. Показательные уравнения, неравенства, системы, содержащие показательные уравнения, встречаются в заданиях ЕГЭ. Поэтому изучению методов их решения должно быть уделено значительное внимание, т.к. в заданиях ЕГЭ системы, содержащие показательные уравнения и неравенства могут быть и комбинированными. И для того, чтобы решить правильно систему уравнений или неравенств, нужно правильно решить показательное уравнение или неравенство.

При решении показательных уравнений и неравенств часто возникают трудности, связанные со следующими особенностями:

  • незнание четкого алгоритма решения показательных уравнений, неравенств и их систем;
  • при решении показательных уравнений и неравенств, ученики производят преобразования, которые не равносильны исходным уравнениям и неравенствам;
  • при решении показательного уравнения и неравенства введением новой переменной забывают возвращаться к обратной замене.

Вышесказанное определяет актуальность выбранной темы и полезность ее изучения для будущей педагогической практики.

Цель работы: изучить теоретический материал по теме, проанализировать данную тему в учебниках по алгебре и началам анализа, систематизировать задания ЕГЭ на решение показательных уравнений и неравенств, систематизировать и обобщить методические рекомендации по решению показательных уравнений и неравенств. Для достижения поставленной цели необходимо решить следующие задачи:

  • изучить требования государственных стандартов по теме «Показательные уравнения и неравенства»;
  • проанализировать материал по теме в учебниках алгебры и начал анализа;
  • систематизировать методы решения показательных уравнений и неравенств;
  • систематизировать и обобщить методические особенности изучения данной темы.

Объектом исследования является процесс обучения математике в старшей школе.

Предметом исследования являются методические особенности изучения показательных уравнений, неравенств и их систем в старших классах средней школы.

Практическая значимость исследования заключается в том, что разработанные методические рекомендации по изучению показательных уравнений и неравенств могут быть использованы учителями и практикантами в школе, а также в ходе занятий по элементарной математике на педагогическом отделении университета. Весь теоретический материал по теме «Показательные уравнения и неравенства и их систем» сгруппирован, приведены алгоритмы решения и разобраны примеры. Рассмотрены методы решения уравнений, предложены задания для самостоятельного изучения и закрепления новых знаний и умений. Данные материалы можно использовать, как в школе, так и для индивидуального обучения, при подготовке к сдаче ЕГЭ, а также для тех, кто хочет углубить свои знания по теме «Показательные уравнения и неравенства и их системы».

Методы решения показательных уравнений и неравенств

Показательные уравнения

См. продолжение статьи