Методика решения задач ЕГЭ №17 «Финансовая математика. Кредиты»

Разделы: Математика, Мастер-класс

Ключевые слова: финансовая грамотность, подготовка к ЕГЭ по математике


Решение задачи можно разбить на 4 этапа:

  1. Подготовка
  2. Заполнение таблицы
  3. Составление математической модели
  4. Решение и получение искомого результата

Немного вводной теории.

1) От момента получения кредита до полного его погашения циклически повторяются 3 шага:

А) начисление процентов;

Б) внесение выплат;

В) формирование оставшегося долга

ВАЖНО!!! Каждый новый период проценты начисляются НА ОСТАТОК ДОЛГА!!!

2) Для удобства и сокращения записи в таблице перед началом ее заполнения введем переменные: S - сумма кредита, х - процентный коэффициент. Если в задаче известна процентная ставка и сумма кредита, то при решении эти данные будут использованы

Рассмотрим задачу. Это одна из самых простых задач.

1) Подготовка

S-сумма кредита. Х=1+0,15 = 1,15

2) Заполнение таблицы. В условии сразу даны все значения третьего столбца (долга). С него и начнем заполнение

Проценты

Выплаты

Долг

1

0,8S

2

0,5S

3

0,1S

4

0

Далее начисляем проценты на остаток долга. Первый долг - это взятый кредит

Проценты

Выплаты

Долг

1

SX

0,8S

2

0,8SX

0,5S

3

0,5SX

0,1S

4

0,1SX

0

Выражаем ВЫПЛАТЫ из двух заполненных, как разность начальной и конечной суммы

Проценты

Выплаты

Долг

1

SX

SX - 0,8S

0,8S

2

0,8SX

0,8SX - 0,5S

0,5S

3

0,5SX

0,5SX - 0,1S

0,1S

4

0,1SX

0,1SX

0

3) Составление математической модели.

Известно, что общая сумма выплат будет меньше 50 млн рублей

SX - 0,8S + 0,8SX - 0,5S + 0,5SX - 0,1S + 0,1SX < 50

4) Решение и получение искомого результата

Для удобства сгруппируем множители: в одни скобки с процентным коэффициентом, в другие - без него.

(SX + 0,8SX + 0,5SX + 0,1SX) - (0,8S + 0,5S + 0,1S ) < 50

Вынесем общие множители за скобки

SX(1 + 0,8 + 0,5 + 0,1) - S(0,8 + 0,5 + 0,1 ) < 50

SX*2,4 - S*1,4 <50

S(2,4X - 1,4) <50

Теперь можно подставить значение Х

S(2,4*1.15 - 1,4) <50

S< 50/1.36. Так как S-целое число и нам требуется наибольшее, S=36

Рассмотрим задачу с неизвестной процентной ставкой.

1) Подготовка

S=1,5 млн. - сумма кредита. Х=1+0,01r

2) Заполнение таблицы. В условии сразу даны все значения третьего столбца (долга). С него и начнем заполнение

Проценты

Выплаты

Долг

1

1,2

2

1

3

0,7

4

0,5

5

0,3

6

0

Далее начисляем проценты на остаток долга. Первый долг - это взятый кредит.

Проценты

Выплаты

Долг

1

1,5X

1,2

2

1,2X

1

3

1X

0,7

4

0,7X

0,5

5

0,5X

0,3

6

0,3X

0

Выражаем ВЫПЛАТЫ из двух заполненных, как разность начальной и конечной суммы

Проценты

Выплаты

Долг

1

1,5X

1,5X - 1,2

1,2

2

1,2X

1,2X - 1

1

3

1X

1X - 0,7

0,7

4

0,7X

0,7X - 0,5

0,5

5

0,5X

0,5X - 0,3

0,3

6

0,3X

0,3X

0

3) Составление математической модели.

Известно, что общая сумма выплат будет больше 2,2 млн рублей

1,5X - 1,2 + 1,2X - 1 + 1X - 0,7 + 0,7X - 0,5 + 0,5X - 0,3 + 0,3X >2,2

4) Решение и получение искомого результата

Для удобства сгруппируем множители: в одни скобки с процентным коэффициентом, в другие - без него. Вынесем общие множители за скобки.

Х(1,5 + 1,2 + 1 + 0,7 + 0,5 + 0,3) - (1,2 + 1 + 0,7 + 0,5 + 0,3) > 2,2

5,2Х - 3,7 >2,2

X > 59/52 Так как Х=1+0,01r и r - наименьшее, получаем r=14

Рассмотрим задачу с большим сроком выплаты кредита.

1) Подготовка

S - сумма кредита. Х=1+0,01*2=1,02

2) Заполнение таблицы. В условии сразу даны все значения третьего столбца (долга). С него и начнем заполнение

Так как срок большой, ограничимся первыми тремя и последними тремя месяцами.

Если в условии сказано, что «долг должен быть на одну и ту же сумму меньше предыдущего», то сумма кредита делится на количество месяцев и каждый месяц долг уменьшается на 1/18

Проценты

Выплаты

Долг

1

17/18*S

2

16/18*S

3

15/18*S

………………………………………………….

16

2/18*S

17

1/18*S

18

0

Далее начисляем проценты на остаток долга. Первый долг - это взятый кредит

Проценты

Выплаты

Долг

1

SX

17/18*S

2

17/18*S*X

16/18*S

3

16/18*S*X

15/18*S

………………………………………………….

16

3/18*S*X

2/18*S

17

2/18*S*X

1/18*S

18

1/18*S*X

0

Выражаем ВЫПЛАТЫ из двух заполненных, как разность начальной и конечной суммы

Проценты

Выплаты

Долг

1

SX

SX - 17/18*S

17/18*S

2

17/18*S*X

17/18*S*X - 16/18*S

16/18*S

3

16/18*S*X

16/18*S*X - 15/18*S

15/18*S

………………………………………………….

16

3/18*S*X

3/18*S*X - 2/18*S

2/18*S

17

2/18*S*X

2/18*S*X - 1/18*S

1/18*S

18

1/18*S*X

1/18*S*X

0

3) Составление математической модели.

В задаче стоит вопрос об общей сумме выплат. Следовательно
SX - 17/18*S + 17/18*S*X - 16/18*S + 16/18*S*X - 15/18*S + … + 3/18*S*X - 2/18*S + 2/18*S*X - 1/18*S + 1/18*S*X =

4) Решение и получение искомого результата

Для удобства сгруппируем множители: в одни скобки с процентным коэффициентом, в другие - без него. Вынесем общие множители за скобки.

= SX/18 (18 + 17+ 16 + … + 3+ 2 + 1) - S/18* (17 + 16 + 15 +…+ 2 + 1) =

В скобках сумма арифметической прогрессии от 1 до 18 и от 1 до 17

= - = 19SX/2 - 17S/2 = S(9,5*1,02 - 8,5) = S*1,19.

То есть сумма выплат составляет 119% от суммы взятого кредита.

Рассмотрим задачу с неизвестным сроком выплаты кредита.

1) Подготовка

S=5 - сумма кредита. Х=1+0,01*20=1,2

2) Заполнение таблицы. В условии сразу даны все значения третьего столбца (долга). С него и начнем заполнение

Так как срок большой, ограничимся первыми тремя и последними тремя месяцами.

Если в условии сказано, что «долг должен быть на одну и ту же сумму меньше предыдущего», то сумма кредита делится на количество месяцев и каждый месяц долг уменьшается на 1/n

Проценты

Выплаты

Долг

1

(n-1)/n*S

2

(n-2)/n *S

3

(n-3)/n *S

………………………………………………….

n-2

2/n*S

n-1

1/n*S

n

0

Далее начисляем проценты на остаток долга. Первый долг - это взятый кредит

Проценты

Выплаты

Долг

1

SX

(n-1)/n*S

2

(n-1)/n*S*X

(n-2)/n *S

3

(n-2)/n *S*X

(n-3)/n *S

………………………………………………….

n-2

3/n*s*x

2/n*S

n-1

2/n*S*X

1/n*S

n

1/n*S*X

0

Выражаем ВЫПЛАТЫ из двух заполненных, как разность начальной и конечной суммы

Проценты

Выплаты

Долг

1

SX

SX - (n-1)/n*S

(n-1)/n*S

2

(n-1)/n*S*X

(n-1)/n*S*X-(n-2)/n *S

(n-2)/n *S

3

(n-2)/n *S*X

(n-2)/n *SX-(n-3)/n *S

(n-3)/n *S

………………………………………………….

n-2

3/n*s*x

3/n*s*x-2/n*S

2/n*S

n-1

2/n*S*X

2/n*S*X-1/n*S

1/n*S

n

1/n*S*X

1/n*S*X

0

3) Составление математической модели.

В задаче стоит вопрос об общей сумме выплат. Следовательно

SX - (n-1)/n*S + (n-1)/n*S*X-(n-2)/n *S + (n-2)/n *SX-(n-3)/n *S + …+3/n*S*X-2/n*S + 2/n*S*X-1/n*S + 1/n*S*X = 7,5

4) Решение и получение искомого результата

Для удобства сгруппируем множители: в одни скобки с процентным коэффициентом, в другие - без него. Вынесем общие множители за скобки.

SX/n*(n + (n-1) + (n-2) + …+3 + 2+ 1) -S/ n* ((n-1)/ +(n-2) + (n-3) +…+2 +1) = 7,5

В скобках сумма арифметической прогрессии от 1 до n и от 1 до (n-1)

- =7,5

Сокращая дроби и подставляя значения S и Х, получаем =7,5

n=4

Рассмотрим другой тип задач, в которых известен не долг, а сумма выплат.

1) Подготовка

S - сумма кредита. Х=1+0,01*10=1,1

2) Заполнение таблицы. В условии говорится о трех платежах, то есть

Проценты

Выплаты

Долг

1

Х

2

3

Начисляя проценты, получаем

Проценты

Выплаты

Долг

1

1,1S

Х

1,1S - X

2

(1,1S - X)*1,1

(1,1S - X)*1,1-2X

3

((1,1S - X)*1,1-2X)*1,1

((1,1S - X)*1,1-2X)*1,1-3X

3) Составление математической модели.

Учитывая, что последний долг должен быть равен нулю, получаем

((1,1S - X)*1,1-2X)*1,1-3X = 0

4) Решение и получение искомого результата

А также известна сумма, выплаченная за три года, то есть

Х+2Х+3Х=2395800, откуда получаем Х=399300

Подставляя найденное значение и решая первое уравнение, получаем S=1923000 рублей

Секрет: существуют только два вида уравнений:

  1. Сумма выплат;
  2. Последний остаток равен нулю.

Других видов уравнений нет!

Желаю всем легких решений!