Вычисление определенных интегралов методом трапеции в среде Microsoft Excel

Разделы: Математика, Информатика, Внеклассная работа

Классы: 10, 11

Ключевые слова: Численные методы, уравнения, Microsoft Excel, интеграл, метод трапеций


Цель урока: Совершенствование умений и навыков по теме «Численное интегрирование», применяя возможности MS Excel по вычисление определенных интегралов методом трапеции. Отработать практическое освоение соответствующих умений и навыков.

Задачи урока:

  • Образовательные – совершенствование умений студентов при вычисление определенных интегралов методом трапеции в среде электронных таблиц MS Excel. Выработать умение применять теоретические знания в практических расчетах;
  • Развивающие – познакомить студентов с применением компьютеров в качестве помощников при решении уравнений. Развивать у студентов математическую речь: создать ситуацию для применения основных понятий в речи; творческого мышления через создание условий для самореализации творческого потенциала обучающихся;
  • Воспитательные – выработать у студентов умение рационально использовать время и возможности компьютерных технологий при решении задач. Воспитывать интерес к предмету через ситуацию успеха и взаимодоверия.

Тип урока: комбинированный урок.

Вид урока: практическое занятие, продолжительность – 2 часа.

Оборудование урока:

  • Компьютеры с OS MS Windows;
  • Программа Microsoft Excel;
  • Презентация по теме, выполненная в программе PowerPoint;
  • Карточки с заданиями для самостоятельной работы.

Структура урока:

1.Актуализация знаний:
1.1. Мобилизующее начало, постановка целей и задач на урок;
1.2.Фронтальный опрос с целью выявления основных этапов решения задач интегрирования и методики решения;
1.3. Постановка задачи с целью повторения алгоритма вычисления определенных интегралов методом трапеции;
1.4.Подведение итогов 1 этапа урока.
2.Применение знаний, формирование умений и навыков:
2.1.Беседа с целью формулировки задания для самостоятельной работы и инструктажа по ее организации;
2.2.Самостоятельная работа в группах по выполнению задания вычисления определенных интегралов методом трапеции в среде Microsoft Excel.
2.3.Подведение итога урока.

В данном уроке особое внимание уделено визуальному представлению информации – в ходе урока с помощью проектора демонстрируются слайды, подготовленные в пакете презентационной графики  Microsoft PowerPoint.

ХОД УРОКА

1. Актуализация знаний

1.1. Мобилизующее начало, постановка целей и задач на урок.

На прошлых уроках мы с Вами изучили приближенное вычисление определенных интегралов, выделили методы их решения и решали данные интегралы ручным счетом. А на сегодняшнем занятии мы будем совершенствовать умения и навыки при вычислении определенных интегралов методом трапеции в среде Microsoft Excel.

- В чем заключается вычисление интеграла?

- Важным средством вычисления определенных интегралов является формула Ньютона-Лейбница . Ее применение на практике связано с существенными трудностями, возникающими при нахождении первообразной в случае подынтегральной функции. Поэтому применяют численные методы, позволяющие найти приближенное значение исходного интеграла с заданной точностью.
- Общий подход к ее решению состоит в том, чтобы аппроксимировать функцию  какой-либо другой функцией , для которой интеграл вычисляется аналитически.

- Тогда для решения задачи строим  с оценкой погрешности   , и  приближенно  с очевидной оценкой погрешности .

- Введем на отрезке  сетку , , где , и таблицу значений , .

- Рассмотрим  простой вариант построения функции , приводящий к формуле трапеций.

- При этом функция   строится как кусочно-линейная интерполяция значений   на равномерной сетке с шагом .

- Тогда


=.

- Формулы такого рода () называют механическими квадратурами,  – коэффициентами (весами) квадратуры,  – ее узлами.

Точность формулы трапеций зависит от гладкости функции . Если она на  имеет первую производную, ограниченную числом , то , и погрешность формулы трапеций не превосходит . Если  на    имеет вторую производную, ограниченную числом , то погрешность формулы итераций не превосходит , поскольку .

Теоретические оценки погрешностей не всегда применяются. Если требуется вычислить интеграл с погрешностью , то мало кто сначала оценит третью производную функции  и вычислит шаг сетки . Эта оценка и значение константы  завышены. Кроме того, само вычисление  может быть трудным, особенно если  задана некоторым сложным образом.

Поэтому, вычисляя интеграл с небольшим числом узлов , получают его значение ; вычисляя интеграл с удвоенным , получают . Если модуль  (где ε – предельное допустимое значение погрешности расчета), то задачу считают решенной. В противном случае вычисляют  и т.д. Для гладких функций  часто интеграл вычисляется очень точно при малом числе узлов.

- Объясните алгоритм вычисления интеграла различными методами?

2. Применение знаний, формирование умений и навыков

Практическое задание «Вычисление определенных интегралов методом трапеции в среде Microsoft Excel.»

Состав задания:

  1. Ознакомиться с теоретической частью задания;
  2. Провести расчет для своего варианта индивидуального задания в Microsoft Excel
  3. Оформить презентацию в Ms PowerPoint, включающую:
    - постановку задачи;
    - алгоритм расчета;
    - таблицу с расчетом из Ms Excel, график исходной функции;
    - результат расчета и его анализ.

Индивидуальное расчетное задание:

  1. Найдите приближенное значение интеграла заданной функции f(x)= 1/(1+x4)1/2 на отрезке [0; 4]
    по формуле трапеций, разбивая отрезок [0; 4] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка.
  2. Представьте графически поставленную задачу.

Постановка задачи:

Дано: f(x)= 1/(1+x4)1/2 на отрезке [0; 4]

Найти: приближенное значение интеграла заданной функции по формуле трапеций, приняв предельное значение погрешности приближенного вычисления интеграла равным ε=0,02.

Таблица Исходная информация

Отрезок [a;b]

Функция f(x)

a

b

Аналитическая запись

Представление в Excel

0

4

1/(1+x4)1/2

=СТЕПЕНЬ((1+СТЕПЕНЬ(B16;4));-1/2)

Анализ заданной функции и результаты вычислений в Ms Excel

Расчет площади

xi

f(xi)

Коэффициенты формулы трапеций

Вычисление Ci*f(xi)

N=2

N=4

N=8

N=2

N=4

N=8

0

1,000

0,5

0,5

0,5

0,500

0,500

0,500

0,5

0,970

0

0

1

0,000

0,000

0,970

1

0,707

0

1

1

0,000

0,707

0,707

1,5

0,406

 

0

1

0,000

0,000

0,406

2

0,243

1

1

1

0,243

0,243

0,243

2,5

0,158

0

0

1

0,000

0,000

0,158

3

0,110

0

1

1

0,000

0,110

0,110

3,5

0,081

0

0

1

0,000

0,000

0,081

4

0,062

0,5

0,5

0,5

0,031

0,031

0,031

                                                                                                     Сумма

0,774

1,591

3,207

Значения интеграла

     

Количество узлов

N=2

N=4

N=8

     

S

1,55кв.мм

1,59кв.мм

1,60кв.мм

     

Погрешность

0,028

0,008

       

 

Ответ: приближенное значение интеграла заданной функции по формуле трапеций равна 1,60кв.мм, значение погрешности приближенного вычисления интеграла равным ε=0,008.

Задания для индивидуальной работы студентов по вариантам:

Найдите приближенное значение интеграла заданной функции f(x) на отрезке [a; b] (см. таблицу ) по формуле трапеций, разбивая отрезок [a; b] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка.

Представьте графически поставленную задачу.

N

отрезок [a; b]

Функция  f(x)

1

[0; 4]

1/(1+x²)1/2

2

[2; 3]

5x4+2x²-х

3

[2; 4]

ех/(х+5) + x³/(х+4)

4

[0; 2]

 (4+x³)1/2

5

[0; 2]

1/(5x4+2x²+2)

6

[10; 18]

4/(1+x4)1/2)1/2

7

[2; 6]

6/(1+x²)1/2

8

[2; 3]

5x4+2x²-х

9

[4; 8]

5/(1+x4)1/2)1/2

10

[1; 3]

12/(5x²+x+6)

11

[0; 4]

е1/(х+5) + 1/(х+4)

12

[2; 4]

(х+x5)1/2

13

[0; 4]

1/(1+x4)1/2

14

[4; 8]

2+(х/(1+x4)1/2)

На сегодняшнем занятии мы отработали навыки вычисления определенных интегралов методом трапеции в среде электронных таблиц MS Excel. Выработали умения применять теоретические знания в практических расчетах.

Список литературы и интернет-ресурсов

  1. Основы компьютерной грамотности: учебное пособие / Кривенкова С.В., Радионова Л.К., Соболенко Н.А., Шванн Д.Э. М.: Издательство МЭИ, 2004.
  2. Самарский А.А., Гулин А.В. Численные методы. М.: Наука, 1989.
  3. Федоренко Р.П. Введение в вычислительную физику. М.: Издательство МФТИ, 1994.
  4. Физико-математические основы техники и электрофизики высоких напряжений. Учебное пособие для вузов / В.В. Базуткин, К.П. Кадомская, Е.С. Колечицкий и др. Под ред. К.П. Кадомской. М.: Энергоатомиздат, 1995.
  5. Поршнев С.В., Беленкова И.В. Численные методы на базе Mathcad. СПб.: БХВ-Петербург, 2005.
  6. Зенков, А.В. ЧИСЛЕННЫЕ МЕТОДЫ /А.В. Зенков. — Екатеринбург: Издательство Уральского университета, 2016. — 127с.
  7. Вычислительные методы // Википедия. [2010—2019]. Дата обновления: 31.01.2019. URL: https://ru.wikipedia.org/?oldid=97827303 (дата обращения: 20.05.2019).
  8. Численное решение уравнений // Википедия. [2010—2018]. Дата обновления: 01.01.2018. URL: https://ru.wikipedia.org/?oldid=89982922 (дата обращения: 20.05.2019).