Тип урока: урок введения нового знания.
Педагогическая технология: проблемное обучение.
Формируемые результаты:
- Предметные: формировать умение строить график функции у = sin x, читать график и применять свойства при решении задач.
- Личностные: умение применять решение, применять независимость суждений.
- Метапредметные: формировать умение соотносить свои действия с планируемыми результатами.
Планируемые результаты: обучающиеся научатся применять свойства функции у = sin x и читать график.
Основные понятия: синусоида, свойства функции у = sin x.
Оборудование: ПК, проектор, Microsoft PowerPoint, презентация «Функция y = sin x, её свойства и график», таблица «Тригонометр».
Ход урока
1. Организационный момент
2. Целеполагание
- «Много из математики не остается в памяти, но когда поймешь ее, тогда легко при случае вспомнить забытое.», писал Михаил Васильевич Остроградский (1801-1862, российский математик, механик). Как вы понимаете эти слова? (Слайд 1)
- Перед вами 4 графика. (Слайд 2)
- Как можно одним словом объединить эти графики? (функции)
- Опишите свойства графиков, представленных на слайде?
- Какие из предложенных графиков функций вам известны?
- Сформулируйте тему урока.
Тема урока: «Функция y = sin x, её свойства и график» (Слайд 3)
- Давайте попробуем определить цели нашего сегодняшнего урока, что мы уже знаем, и чему должны или можем научиться? (учитель вместе с обучающимися формирует цели, записывает их на доске).
- Познакомимся с историей возникновения слова синус (Слайд 4)
Синус (история имени)
Синус (sin) — название тригонометрической функции, появившееся благодаря удивительной цепочке искажений во время переводов математических трактатов. Древние индийские математики называли функцию «полу-тетивой», а затем просто «тетивой» — «джива», так как при геометрическом построении изображение напоминало лук. Арабские математики при знакомстве с трудами индийских коллег не стали переводить слово «джива» на арабский, а просто записали его по буквам. В процессе адаптации, устного использования и пр. оно превратилось в арабское выражение «джайб», которое можно перевести как пазуха, складка, карман, впадина. Когда, в свою очередь, арабские математические трактаты попали к европейским математикам, те перевели джайб на латинский, благо под рукой как раз было изящное слово, обозначающее складку или пазуху на римской тоге — слово sinus. Родственную функцию назвали complementi sinus, дополнительный синус. Позже утвердилось современное сокращение: sin и cos.
3. Планирование работы
- Составим план работы (перечень свойств, которые будут исследоваться).
Обучающиеся записывают план исследования синуса в тетрадях.
План
- Область определения
- Область значения
- Нули функции
- Промежутки возрастания, убывания функции
- Промежутки знакопостоянства
- Четность функции
- Монотонность функции
- Наименьшее и наибольшее значение функции
- Какую функцию называют периодической?
- Что такое период?
- Какое число является главным периодом функции у = sin x?
4. Восприятие, осмысление, первичное закрепление
- Что происходит с ординатой точки при ее движении по первой четверти? (ордината увеличивается). Что происходит с ординатой точки при ее движении по второй четверти? (ордината постепенно уменьшается). Как это связано с монотонностью функции? (функция у = sin t возрастает на отрезке и убывает на отрезке ).
- Запишем функцию у = sin t в привычном для нас виде у = sin x (строить будем в привычной системе координат хОу) и составим таблицу значений этой функции.
х | 0 |
|
|
|
|
|
|
у |
0 |
|
|
1 |
|
|
0 |
Изучение нового материала (презентация, слайды 5-6).
Построение графика функции у = sin x и запись свойств функции в тетради. (Слайды 7–10)
1) D(y) =
2) E (y) =
3) функция ограничена и сверху, и снизу
4) унаиб = 1, унаим = -1
5) непрерывная функция
6) нечетная функция
7) возрастает на ; убывает на
- Стихотворение (отрывок)
И линия эта волною качается,
И синусом график ее называется,
И через период она повторяется,
В периоде трижды она обнуляется,
Она полпериода вверх поднимается,
Придет в единицу и вниз опускается,
И так вдоль абсциссы все время болтается.
В системе, которую создал Декарт.
5. Применение знаний и способов при решении задач
- Постройте график функции (самостоятельно с проверкой, слайды 11-14):
а) у = sin x + 2
б) у = sin x - 1
в) у = sin
г) у = sin
- Решите графически уравнение sin x = (проверка слайд 15).
6. Первичная систематизация знаний и способов деятельности, их перенос и применение в новых ситуациях
№ 21.5 (1), 21.9 (1)
7. Рефлексия
- Предлагаю оценить факт достижения цели урока: на все ли вопросы найдены ответы?
- Оцените свою работу на уроке. Закончите предложение. (Слайд 17)
Урок –
- заставил задуматься…
- навёл меня на размышления…
- Что нового вы узнали на уроке?
- Что вы считаете нужным запомнить?
- Над чем ещё надо поработать?
Домашняя работа
- п. 21 (учить свойства функции у = sin x)
- учебник № 21.6 (1)
- Построить график функции у = sin (x - )
- Спасибо за урок
Использованные материалы и ресурсы
- Мерзляк А.Г., и др. Алгебра и начала математического анализа (углублённый уровень) 10 кл. – М.: «Вентана-Граф», 2017.
- Мерзляк А.Г., и др. Дидактические материалы к учебнику Алгебра и начала математического анализа (углублённый уровень) – М.: «Вентана-Граф», 2017.
- http://matematikam.ru/calculate-online/grafik.php