Тип урока: изучение нового материала.
Цель: Создать проблему, в ходе решения которой обучающиеся смогут сформулировать свойства функции.
Планируемые результаты:
Личностные результаты: формировать устойчивый познавательный интерес, уважение к личности и её достоинству, доброжелательное отношение к окружающим, любовь к своему городу.
Метапредметные результаты:
- Коммуникативные УУД: ученик получит возможность вступать в обсуждение, аргументируя свою точку зрения, используя адекватные языковые средства для отображения своих чувств, мыслей, мотивов и потребностей; развивать умение договариваться и приходить к общему решению в совместной деятельности на основе взаимоуважения к партнёру по работе.
- Регулятивные: ставить учебную задачу на основе соотнесения того, что уже известно и усвоено, и того, что еще неизвестно.
- Познавательные: записывать выводы в виде свойств функции «если..., то...».
Предметные результаты:
- Формулировать свойства функции в зависимости от коэффициента а.
- Применять свойства функции при решении заданий.
- Уметь приводить примеры применения функции на других предметах и в жизненных ситуациях.
Учебное оборудование: мультимедийный проектор, компьютер, интерактивная доска, учебник, дидактические материалы, раздаточный материал.
Ресурсы: презентация «Парабола», презентация «Квадратичная функция в архитектуре г. Санкт-Петербурга», видео «Парабола».
Этап (учебная ситуация) |
Деятельность учителя |
Деятельность учащихся |
1. Этап мотивации Цель этапа: включение учащихся в деятельность на личностно-значимом уровне |
- Добрый день, ребята! |
Демонстрируют готовность к уроку |
2. Актуализация знаний Цель этапа: повторение изученного материала, необходимого для «открытия нового знания», и выявление затруднений в индивидуальной деятельности каждого учащегося. 8-9 мин |
1. Устная работа (2-3 минуты). Ответить на вопросы: - с какой функцией вы познакомились на прошлом уроке? - вид и название графика функции у = х²; - расположение оси симметрии параболы; координаты вершины параболы у = х²; - что означает возрастание функции у = х² на промежутке х≥0; убывание функции у = х² на промежутке х≤0; - понятие фокуса данной параболы; координаты фокуса; При ответах на вопросы можно воспользоваться рисунком графика (слайд 2. Парабола у=х²). 2. Устно. В учебнике на стр 239 вводное упражнение № 1(2;4) 3. Самостоятельна работа по проверке домашнего задания (5-6 мин). Выполнить работу и поставить свою оценку. Слайд 3 В тетради с домашней работой выполнить самостоятельную работу, в ходе которой вы покажите, как вы освоили тему у = х². 1 вариант № 4(1,3); №5 (1) 2 вариант № 4(2;4); №5 (2). На выполнение самостоятельной работы отводится 5 минут. |
1. Дают ответы: - с квадратичной функцией у =ax²+bx+c и подробно изучили функцию вида у=х². - график представляет собой кривую, которая называется парабола. - ось симметрии параболы – ось ординат; координаты вершины (0;0); - функция возрастает на промежутке х≥0 и при х2> х1 → у2>у1; функция у = х2 убывает на промежутке х≤ 0 и при х2> х1 → у2<у1; - Фокус параболы обозначается буквой F и имеет координаты (0; ). Если в этой точке находится источник света, то все отраженные лучи идут параллельно. Данное свойство широко используется в технике при изготовлении прожекторов, локаторов и других приборов. Свойства показывают на графике. 2. Дают ответ: 3. Выполняют самостоятельную работу, оценивают ее и через 5 минут передают тетрадь на стол учителя. |
3. Постановка проблемы Цель этапа: сформулировать проблему, тему и цели урока. 2- 3 мин |
- В домашнем задании к сегодняшнему уроку вам необходимо было помимо решения заданий и повторения параграфа найти параболы в архитектуре нашего города Санкт-Петербурга. Сделать фото или найти соответственные слайды в интернете. Все кто справился с данным заданием, скинули свои материалы в группу нашего класса. Ответственная группа ребят в результате сделала презентацию. (На Слайде 4 необходимо щелкнуть мышкой по слову архитектура, чтобы запустить презентацию). В презентации некоторые сооружения не подписаны для того, чтобы ученики могли их узнать сами. Давайте ее посмотрим и ответим на следующие вопросы: |
Просмотр презентации «Парабола в архитектуре Санкт-Петербурга».
1. Арки домов, мостов, метро, плафонов, иконостасов, купола храмов, фонтаны, радуга.
|
4. Открытие учениками нового знания Цель этапа: организовать решение проблемной ситуации. 13-15 мин |
-Ребята, я вам предлагаю сегодня поработать в группах. |
Выполняют заданий в тетрадях. Отмечают разницу между получившимися графиками. Для закрепления просматривают фильм. Записывают свойства функции у=ах² в тетради. Прочитывают, получившиеся свойства, при необходимости дополняют или исправляют. Находят и прочитывают свойства в учебники. Один ученик медленно прочитывает каждое свойство вслух, а один ученик показывает эти свойства на слайде у доски. |
5. Этап закрепления изученного материала Первичное закрепление 9-10 мин |
А сейчас мы будем закреплять полученные знания. На странице 238-239 после новой темы устно ответить на устные вопросы и задания №1 -№4, устно выполнить вводное упражнение №2. Письменно выполнить № 597(3), 598 (2,4). После выполнения последнего номера снова предложить вернуться к №2 из вводных упражнений и предложить каждой группе найти коэффициент адля указанных точек для функции у=ах²: Представители каждой группы записывают решения на доске. - Чему вы научились при решении № 598 и данного задания? - А кто из учащихся найдет на первом слайде эти графики, отметит эти точки и точки, симметричные данным точкам теми же буквами, но с индексом 1. Все остальные в своих группах должны отметить свои точки на рисунке №1 и отметить точки, симметричные данным. Хорошо! Молодцы, ребята! |
Учащиеся работают с учебником, отвечают устно на вопросы 1-4, дают пояснения, устно выполняют задание № 2 из вводных упражнений. Письменно выполняют № 597(3) и 598 (2;4), эти задания выполняют ученики у доски с комментарием и с использованием свойств. При необходимости учащиеся класса помогают. |
6. Самостоятельная работа с самопроверкой Цель этапа: создать условия для самостоятельного решения и нахождения ошибок в работе. 6 мин |
На листе 1 выполнить самостоятельную работу, проверить ее при помощи слайдов 8 и 9 и поставить себе оценку. Самостоятельная работа, стр 62, § 37, № 1, 3(1-4), 4(1;2) (Алгебра, дидактические материалы, 8 класс. М.В. Ткачева. М: Просвещение, 2013)
|
Выполняют самостоятельную работу, проверяют ошибки при помощи слайдов 8 и 9, выставляют себе оценки и передают на стол учителя. |
7. Этап контроля и оценки. Итог урока (рефлексия деятельности) Цель этапа: осознание уч-ся своей учебной деятельности, самооценка результатов деятельности своей и всего класса |
- Какая задача стояла перед нами в начале урока? |
Дают ответы на вопросы |
Домашнее задание 1 мин |
Слайд 10 Для всех: 1. Прочитать материал §37, просмотреть записи по уроку в тетради. Для желающих: 3. Творческое задание: найти примеры применения функции у=ах² в реальной жизни или при изучении других предметов. Урок окончен. Всем спасибо за работу |
Записывают домашнее задание в дневник или в тетрадь |
Лист самооценки
Вид работы | Оценка (+, -, 3, 4, 5) |
1.Я сам(а) определил(а) тему урока |
|
2.Я вывел(а) свойство функции у=ах², работая в группе и обсуждая работы других гупп |
|
3.Решение самотоятельной рабты №1 |
|
4.Решение самотоятельной рабты №2 |
|
5. Я активно рабтал(а) на уроке, правильно решал(а) задания. |
|
6. Я считаю, что сегодня класс работал на оценку |
|
Учебно-методическое обеспечение урока
- Алгебра 8 класс: учебник для общеобразовательных организаций. /М.Ю. Колягин, М.В. Ткачёва, Н.Е. Фёдорова, М.И. Шабунин/.
- М.: Просвещение, 2013.- 336с.
- Алгебра. Дидактические материалы 8 класс. /М.В. Ткачёва, Н.Е. Фёдорова, М.И. Шабунин/- 2-е издание доработанное.- М.: Просвещение, 2013.- -96 с.
- Презентация «Парабола у=ах²».
- Презентация «Парабола в архитектуре г. Санкт-Петербурга», авторская. Использованы картинки Google «Парабола в архитектуре г.Санкт-Петербурга».
- Фильм «Парабола»: https://www.youtube.com/watch?v=f3qwSN-ebr4.