Текстовые задачи на итоговой аттестации по математике: на движение по окружности; на нахождение длины движущегося объекта; на нахождение средней скорости

Разделы: Математика


В статье рассмотрены задачи в помощь учащимся: для отработки навыков решения текстовых задач при подготовке к ЕГЭ, при обучении решению задач на составление математической модели реальных ситуаций во всех параллелях основной и старшей школы. В ней представлены задачи: на движение по окружности; на нахождение длины движущегося объекта; на нахождение средней скорости.

I. Задачи на движение по окружности.

Задачи на движение по окружности оказались сложными для многих школьников. Решаются они почти так же, как и обычные задачи на движение. В них также применяется формула . Но есть момент, на который обратим внимание.

Задача 1. Из пункта А круговой трассы выехал велосипедист, а через 30 мин следом за ним отправился мотоциклист. Через 10 мин после отправления он догнал велосипедиста в первый раз, а еще через 30 мин после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км/ч.

Решение. Скорости участников примем за х км/ч и у км/ч. В первый раз мотоциклист обогнал велосипедиста через 10 мин, то есть через ч после старта. До этого момента велосипедист был в пути 40 мин, то есть ч. Участники движения проехали одинаковые расстояния, то есть y =x. Внесем данные в таблицу.

Таблица 1

Участник движения v (км/ч.) t(ч) s(км)
велосипедист х
мотоциклист у

Мотоциклист затем второй раз обогнал велосипедиста. Произошло это через 30 мин, то есть через ч после первого обгона. Какие расстояния они проехали? Мотоциклист обогнал велосипедиста. А это значит, он проехал на один круг больше. Вот тот момент,

на который надо обратить внимание. Один круг – это длина трассы, Она равна 30 км. Составим другую таблицу.

Таблица 2

Участник движения v(км/ч.) t(ч) s(км)
велосипедист х
мотоциклист у

Получим второе уравнение: y - x = 30. Имеем систему уравнений: В ответе укажем скорость мотоциклиста.

Ответ: 80 км/ч.

Задачи (самостоятельно).

I.1.1. Из пункта “А” круговой трассы выехал велосипедист, а через 40 мин следом за ним отправился мотоциклист. Через 10 мин после отправления он догнал велосипедиста в первый раз, а еще через 36 мин после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 36 км. Ответ дайте в км/ч.

I.1. 2. Из пункта “А” круговой трассы выехал велосипедист, а через 30 мин следом за ним отправился мотоциклист. Через 8 мин после отправления он догнал велосипедиста в первый раз, а еще через 12 мин после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 15 км. Ответ дайте в км/ч.

I.1. 3. Из пункта “А” круговой трассы выехал велосипедист, а через 50 мин следом за ним отправился мотоциклист. Через 10 мин после отправления он догнал велосипедиста в первый раз, а еще через 18 мин после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 15 км. Ответ дайте в км/ч.

Задача 2.

Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой 20 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 15 км/ч больше скорости другого?

Решение.

Рисунок 1

При одновременном старте мотоциклист, стартовавший из “А”, проехал на полкруга больше, стартовавший из “В”. То есть на 10 км. При движении двух мотоциклистов в одном направлении скорость удаления v = -. По условию задачи v= 15 км/ч =км/мин = км/мин – скорость удаления. Находим время, через которое мотоциклисты поравняются в первый раз.

10:= 40(мин).

Ответ: 40 мин.

Задачи (самостоятельно).

I.2.1. Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой 27 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 27 км/ч больше скорости другого?

I.2.2. Два мотоциклиста стартуют одновременно в одном направлении из двух диаметрально противоположных точек круговой трассы, длина которой 6 км. Через сколько минут мотоциклисты поравняются в первый раз, если скорость одного из них на 9 км/ч больше скорости другого?

Задача 3.

Из одной точки круговой трассы, длина которой равна 8 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 89 км/ч, и через 16 мин после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Решение.

16 мин == .

х км/ч – скорость второго автомобиля.

(89 – х) км/ч – скорость удаления.

8 км – длина круговой трассы.

Уравнение.

(89 – х) = 8,

89 – х = 2· 15,

89 – х = 30,

х = 59.

Ответ: 59 км/ч.

Задачи (самостоятельно).

I.3.1. Из одной точки круговой трассы, длина которой равна 12 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 103 км/ч, и через 48 мин после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

I.3.2 . Из одной точки круговой трассы, длина которой равна 6 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 114 км/ч, и через 9 мин после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

I.3.3. Из одной точки круговой трассы, длина которой равна 20 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 105 км/ч, и через 48 мин после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

I.3.4. Из одной точки круговой трассы, длина которой равна 9 км, одновременно в одном направлении стартовали два автомобиля. Скорость первого автомобиля равна 93 км/ч, и через 15 мин после старта он опережал второй автомобиль на один круг. Найдите скорость второго автомобиля. Ответ дайте в км/ч.

Задача 4.

Часы со стрелками показывают 8 ч 00 мин. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой?

Решение. Предполагаем, что экспериментально не решаем задачу.

За один час минутная стрелка проходит один круг, а часовая часть круга. Пусть их скорости равны 1 (круг в час) и Старт - в 8.00. Найдем время, за которое минутная стрелка в первый раз догонит часовую.

Минутная стрелка пройдет на больше, поэтому получим уравнение

1 - .

Значит, в первый раз стрелки поравняются через

Пусть во второй раз стрелки поравняются через время z. Минутная стрелка пройдет расстояние 1·z, а часовая причем минутная стрелка пройдет на один круг больше. Запишем уравнение:

1· z - = 1.

Решив его, получим, что .

Итак, через стрелки поравняются во второй раз, еще через – в третий, и ещё через – в четвертый раз.

Следовательно, если старт был в 8.00., то в четвертый раз стрелки поравняются через

4ч = 60 * 4 мин = 240 мин.

Ответ: 240 минут.

Задачи (самостоятельно).

I.4.1.Часы со стрелками показывают 4 ч 45 мин. Через сколько минут минутная стрелка в седьмой раз поравняется с часовой?

I.4.2.Часы со стрелками показывают 2 ч ровно. Через сколько минут минутная стрелка в десятый раз поравняется с часовой?

I.4.3. Часы со стрелками показывают 8 ч 20 мин. Через сколько минут минутная стрелка в четвертый раз поравняется с часовой? четвертый

II. Задачи на нахождение длины движущегося объекта.

Задача 1.

Поезд, двигаясь равномерно со скоростью 80км/ч, проезжает мимо придорожного столба за 36 с. Найдите длину состава поезда в метрах.

Решение. Так как скорость поезда указана в часах, то переведем секунды в часы.

1) 36 сек =

2) найдем длину состава поезда в километрах.

80·

Ответ: 800м.

Задачи (самостоятельно).

II. 2.Поезд, двигаясь равномерно со скоростью 60км/ч, проезжает мимо придорожного столба за 69 с. Найдите длину поезда в метрах. Ответ: 1150м.

II. 3. Поезд, двигаясь равномерно со скоростью 60км/ч, проезжает мимо лесополосы, длина которой 200 м, за 1мин 21 с. Найдите длину поезда в метрах. Ответ: 1150м.

III. Задачи на среднюю скорость.

На экзамене по математике может встретиться задача о нахождении средней скорости. Надо запомнить, что средняя скорость не равна среднему арифметическому скоростей. Средняя скорость находится по специальной формуле:

= .

Если участков пути было два, то.

Задача 1.

Расстояние между двумя селами 18 км. Велосипедист ехал из одного села в другое 2ч, а возвращался по той же дороге 3ч. Какова средняя скорость движения велосипедиста на всем участке пути?

Решение:

2 ч+3 ч = 5 ч - затратил на всё движение,

.

Ответ: .

Задача 2.

Турист шел со скоростью 4км/ч, потом точно такое же время со скоростью 5 км/ч. Какова средняя скорость движения туриста на всем участке пути?

Решение:

Пусть турист шел t ч со скоростью 4 км/ч и t ч со скоростью 5 км/ч. Тогда за 2t ч он прошел 4t + 5t = 9t (км). Средняя скорость движения туриста равна = 4,5 (км/ч).

Ответ: 4,5 км/ч.

Замечаем, средняя скорость движения туриста оказалась равной среднему арифметическому двух данных скоростей. Можно убедиться в том, что если время движения на двух участках пути одинаково, то средняя скорость движения равна среднему арифметическому двух данных скоростей. Для этого решим эту же задачу в общем виде.

Задача 3.

Турист шел со скоростью км/ч, потом точно такое же время со скоростью км/ч. Какова средняя скорость движения туриста на всем участке пути?

Решение:

Пусть турист шел t ч со скоростью км/ч и t ч со скоростью км/ч. Тогда за 2t ч он прошел t + t = t (км). Средняя скорость движения туриста равна

= (км/ч).

Задача 4.

Некоторое расстояние автомобиль преодолел в гору со скоростью 42 км/ч, а с горы – со скоростью 56 км/ч.

Какова средняя скорость движения автомобиля на всем участке пути?

Решение:

Пусть длина участка пути равна s км. Тогда в оба конца автомобиль проехал 2 s км, затратив на весь путь .

Средняя скорость движения равна 2 s: (км/ч).

Ответ: 48 км/ч.

Задача 5.

Некоторое расстояние автомобиль преодолел в гору со скоростью км/ч, а с горы – со скоростью км/ч.

Какова средняя скорость движения автомобиля на всем участке пути?

Решение:

Пусть длина участка пути равна s км. Тогда в оба конца автомобиль проехал 2 s км, затратив на весь путь .

Средняя скорость движения равна 2 s: (км/ч).

Ответ:км/ч.

Рассмотрим задачу, в которой средняя скорость задана, а одну из скоростей нужно определить. Потребуется применение уравнения.

Задача 6.

В гору велосипедист ехал со скоростью 10 км/ч, а с горы – с некоторой другой постоянной скоростью. Как он подсчитал, средняя скорость движения оказалась равной 12 км/ч.

С какой скоростью велосипедист ехал с горы?

Решение:

Пусть в гору и с горы велосипедист проехал по s км, всего 2s км. Так как средняя скорость равна 12 км/ч, то на путь туда и обратно затрачено Пусть скорость движения с горы равна, тогда на путь туда и обратно затрачено Составим уравнение: .

Разделим обе части уравнения на s (s 0), , получим равносильное уравнение:

Велосипедист ехал с горы со скоростью 15 км/ч.

Ответ: 15 км/ч.

Задачи (самостоятельно).

III. 1. Расстояние между двумя пунктами 45 км. Мотоциклист проехал это расстояние в одном направлении (в гору) со скоростью 40 км/ч, а в другом направлении (с горы) со скоростью 60 км/ч. Какова средняя скорость движения мотоциклиста на всем участке пути?.

III. 2. Половину времени, затраченного на дорогу, автомобиль ехал со скоростью 60 км/ч, а вторую половину времени – со скоростью 46 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути..

III. 3.На пути из одного поселка в другой автомобиль некоторое время шел со скоростью 60 км/ч, потом точно такое же время со скоростью 40км/ч, потом точно такое же время со скоростью, равной средней скорости движения на двух первых участках пути. Какова средняя скорость движения на всем пути из одного поселка в другой?

III. 4. Велосипедист едет от дома до места работы со средней скоростью 10 км/ч, а обратно – со средней скоростью 15 км/ч, поскольку дорога идет немного под уклон. Найдите среднюю скорость движения велосипедиста на всем пути от дома до места работы и обратно..

III. 5. Автомобиль ехал из пункта А в пункт В порожняком с постоянной скоростью, а возвращался по той же дороге с грузом со скоростью 60 км/ч. С какой скоростью он ехал порожняком, если средняя скорость движения оказалась равной 70 км/ч?.

III. 6. Первые 100 км автомобиль ехал со скоростью 50 км/ч, следующие 120 км – со скоростью 90 км/ч, а затем 120 км – со скоростью 100 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути..

III. 7. Первые 100 км автомобиль ехал со скоростью 50 км/ч, следующие 140 км – со скоростью 80 км/ч, а затем 150 км – со скоростью 120 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути..

III. 8. Первые 150 км автомобиль ехал со скоростью 50 км/ч, следующие 130 км – со скоростью 60 км/ч, а затем 120 км – со скоростью 80 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути..

III. 9. Первые 140 км автомобиль ехал со скоростью 70 км/ч, следующие 120 км – со скоростью 80 км/ч, а затем 180 км – со скоростью 120 км/ч. Найдите среднюю скорость автомобиля на протяжении всего пути..