Цели урока:
- Закрепление и углубление знаний и умений по данной теме путем решения различных упражнений с учетом индивидуальных способностей учащихся.
- Развитие логического мышления, познавательной активности, творческих способностей, внимания, речи и памяти.
- Воспитание интереса к предмету, умения общаться, умения слушать, побуждение учащихся к само и взаимоконтролю, воспитание общей культуры поведения, видения связи между математикой и окружающим нас миром (жизнью).
Тип урока: обобщение и систематизация знаний
Оборудование:
- мультимедийный проектор;
- ноутбук;
- оценочные листы учащихся для самоконтроля знаний;
- тест.
План урока
- Организационный момент (2 мин).
- Актуализация знаний (5 мин).
- Выступление учащегося с докладом об истории формирования понятия "функция" (3 мин)
- Цифровой диктант (5 мин).
- Решение упражнений по теме (8 мин)
- Тест (8 мин).
- Связь полученных знаний с жизнью (4 мин)
- Творческий конкурс (5 мин).
- Рефлексия деятельности на уроке (3мин)
- Домашнее задание (2 мин).
I. Организационный момент
Учитель: Здравствуйте, ребята! Садитесь. Открываем тетради и записываем число и название темы. Сегодня мы будем продолжать работать по теме "Функции у =х2 и у=х3 и их графики". Мы закрепим глубже умения и навыки по данной теме путем решения различных упражнений, а также увидим связь между функциями и окружающим нас миром.
II. Актуализация знаний
Учитель: Давайте вспомним, что такое функция, способы задания функций, график функции. Я предлагаю вам таблицу, на которой изображены графики функций, но не все они вам известны (знакомы). Внимательно посмотрите и ответьте на вопросы: на каком из рисунков таблицы изображены график:
а) линейной функции;
б) прямой пропорциональности;
в) функции у = х2 ;
г) функции у=х3
III. Выступление учащегося с докладом об истории формирования понятия "функция"
Учитель: Ребята! Как и всякое понятие, функция сформировалась не сразу, прежде чем иметь такое современное определение, которым мы сейчас пользуемся. Поэтому предлагаю послушать несколько слов из истории (выступает учащийся с сообщением об истории формирования понятия "функция")
IV. Цифровой диктант
Учитель: А теперь проверим, как вы знаете свойства функций у =х2 и у=х3 . Проведем цифровой диктант. Учитель произносит некоторое утверждение, и если учащиеся согласны, то они ставят цифру 1 (один) , если нет – 0 (ноль).
- График функции у =х2 проходит через точку начала координат (1).
- График функции у=х3 называют параболой (0).
- У функции у =х2 противоположным значениям х соответствует одно и то же значение у (1).
- График функции у=х3 лежит выше оси ох (0).
- График линейной функции – прямая (1).
Учащиеся проверяют друг у друга выполненные задания, обмениваются листами по парте, ставят оценки, листы с заданиями сдают учителю.
V. Решение упражнений по теме
VI. Тест
Учитель: А теперь, ребята, посмотрим, как вы можете применять на практике полученные знания. Учащимся выдается тест на 2 варианта, через определенное время учитель забирает тетради на проверку.
I Вариант.
1. Укажите пару функций, графики которых параллельны:
1) y=3-2х
2) y=3x-2
3) y=-2
4) y=-2х
а) 1 и 2; б) 1 и 4; в) 2 и 3; г) 3 и 4
2. Какие из точек А (-2;8); В (2;8); С (0,1;0,001) принадлежат графику функции у=х3
а) А; б) С; в) В; С; г) В
3. Сторону квадрата увеличили в 2 раза. Во сколько раз увеличилась площадь квадрата?
а) 4; б) 8; в) 16; г) 9
II Вариант.
1. Укажите среди данных функций все функции, являющиеся линейными:
1) y=5-2х
2) y=х
3) y=6
4) y=х2-3
5) y
6) y =
а) 1;3;5; б) 1;2;6; в) 2;3;5; г) 1;2;3;6
2. Какие из точек А (-2;2); В (2;4); С (-3;9) принадлежат графику функции у=х2
а) А; б) В; в) С; г) В;С
3. Ребро куба увеличили в 2 раза. Во сколько раз увеличился объем куба?
а) 4; б) 8; в) 16; г) 2
VII. Cвязь полученных знаний с жизнью
Учитель: Великий философ Ф. Энгельс сказал: "Как и другие науки, математика возникла из практических нужд людей: из измерения площадей земельных участков и вместимости сосудов, из счисления времени и их механики". Советский математик и педагог А.И. Маркушевич тоже говорил о большой без преувеличения значимости математики как науки: " Через математические знания, полученных в школе, лежит широкая дорога к огромным, почти необозримым областям труда и открытий". Таким образом, те знания, которые мы получаем ежедневно на уроках, применяются нами активно в повседневной жизни. Далее следует выступление ученика о значении математических знаний при строительстве железных дорог, мостов, платин и дамб, о значении математики в таких сферах как самолето и кораблестроение, конструировании и моделировании.
VIII. Творческий конкурс
На дом вам задавалось задание (по желанию) – придумать стихотворение на тему функции.
Далее, ребята, выполнившие творческое задание (придумавшие стихотворение), выступают перед классом.
В наше время, чтобы строить
И машины создавать
Надо функции познать.
А сегодня мы решали, много нового узнали
Удивительный урок,
Он пойдет, конечно, впрок (стихотворение одного из учащихся.)
IX. Рефлексия деятельности на уроке
Учитель: Сегодня на уроке мы закрепляли с вами трудную тему "Функции у =х2 и у=х3
С функциями вы продолжите работать в следующих классах и будете изучать их графики и свойства.
Вопросы для обсуждения:
1.Что нового узнали на уроке?
2. Где могут пригодиться наши знания?
3. Как вы оцените свою работу на уроке?
X. Домашнее задание
(дифференцированное) из учебника.
Контрольный лист учащегося.
- Домашнее задание_____
- Взаимооценка за математический диктант_____
- Оценка за тест_____
- Работа по теме - в ходе решения учащиеся за более интересные предложения и дополнения получают оценки.
- Итоговая оценка _____.