Тип урока: урок открытия «нового» знания
Цели:
- развитие навыков выполнения действий сложения и вычитания дробей с одинаковыми знаменателями;
- умение видеть математическую задачу в несложных практических ситуациях.
Планируемые результаты:
- Личностные УУД
- понимать смысл поставленной задачи;
- уметь выстраивать аргументацию;
- контролировать процесс и результат учебной деятельности.
- Метапредметные УУД
- формулировать и записывать с помощью букв правила сложения и вычитания дробей с одинаковыми знаменателями;
- понимать сущность алгоритмических предписаний и уметь действовать в соответствии с предложенным алгоритмом;
- находить ошибки и понимать их.
- Предметные УУД
- выполнять сложение и вычитание дробей с одинаковыми знаменателями, используя навыки преобразования дробей;
- применять взаимосвязь сложения и вычитания для нахождения неизвестных компонентов этих действий, для самопроверки при выполнении вычислений;
- решать текстовые задачи, содержащие дробные данные.
Формы работы обучающихся: фронтальная, самостоятельная, работа в парах, информационно-поисковая.
Необходимое техническое оборудование: мультимедийный проектор, ПК.
Сценарный план урока
I. Организационный этап (2 мин.)
«Через математические знания, полученные в школе, лежит широкая дорога к огромным, почти необозримым областям труда и открытий». (А.Маркушевич) (Презентация. Слайд 1). И не только великие умы делают открытия, и мы на уроках можем стать юными исследователями, открывая для себя новые законы и правила математики.
II. Актуализация знаний (5 мин.)
– Для того, чтобы на уроке познакомится с
новыми правилами, повторим ранее изученные.
– Вычислите и назовите компоненты в
математических действиях:
15 + 25, 49 – 34, 203 + 23, 1000 – 15
– Какие виды обыкновенных дробей вы знаете:
– Назовите числитель, знаменатель каждой дроби.
– Что показывает знаменатель и числитель дроби?
– Определите по рисунку (Слайд 2), будут ли верны
равенства:
III. Постановка целей и задач урока (2 мин.)
– Рассматривая рисунок, мы наглядно убедились в справедливости равенств:
– Ребята, как вы думаете, какова цель
сегодняшнего урока?
– Научиться складывать и вычитать дроби с
одинаковыми знаменателями.
– Записываем в тетрадях тему урока: «Сложение и
вычитание дробей с одинаковыми знаменателями».
– Попробуйте сформулировать правила сложения и
вычитания дробей с одинаковыми знаменателями.
– Используя буквы, правило сложения и вычитания
дробей с одинаковыми знаменателями можно
записать так:
IV. Первичное усвоение новых знаний (15 мин.)
1. Вычислить:
2. Вычислить:
3. Решение уравнений:
4. Решение задач:
V. Динамическая пауза (2 мин.) (Слайд 3)
– После умственной работы, надо нам немного передохнуть.
VI. Первичная проверка понимания (7 мин.) (Слайд 4).
– Выполним работу в тетрадях по вариантам:
I вариант II вариант
1. Вычислить:
2. Найти значение выражения:
– Обменяйтесь тетрадями и проверьте правильность решения (ключи – Слайд 5).
VII. Первичное закрепление (4 мин.)
Учебник: стр.158 №544
Работа в классных тетрадях
VIII. Информация о домашнем задании и комментарии по его выполнению (3 мин.)
Учебник: читать с. 156, 157;
Задачник: стр.48 №328 (а,в,д), 329; на повторение
стр.46 №321 (а,б)
IX. Историческая справка (3 мин.)
Встреча со Старичками-Боровичками (два
брата-близнеца приготовили интересный
исторический материал):
– Люди в своей практической деятельности пришли
к понятию дробного числа очень давно, в связи с
потребностью измерять различные величины.
– Не всегда результат измерения или стоимость
удавалось выразить натуральными числами.
– Приходилось учитывать и части, и доли меры.
–Так появились дроби.
– Сохранились египетские папирусы со времени 2000
– 1600 лет до нашей эры с записями арифметических
действий над дробями.
– В Древнем Вавилоне сначала употребляли дроби с
числителем 1:
– В Индии не писали дробную черту, знак + еще не существовал (Слайд 6):
1 8 |
3 8 |
2 8 |
Эта запись означает:
– В русском языке слово «дробь» появилось в VIII
веке, оно происходит от глагола «дробить» –
разбивать, ломать на части.
– В первых учебниках математики в XVII веке дроби
так и назывались «ломаные числа».
– Первым европейским ученым, который стал
использовать современную запись дробей, был
итальянский купец, математик и путешественник
Фибоначчи.
– Математики Древнего Египта вместо обычных для
нас знаков + и – использовали знаки –^ и ^–
– Они назывались «идущие ноги». Как вы думаете,
какое действие обозначает каждый из этих знаков?
Ответ вы получите, разгадав примеры Древнего
Египта. Здесь одно равенство неверное, а
остальные верные:
(Слайд 7).
X. Рефлексия (3 мин.)
– Итак, сегодня на уроке мы с вами изучили
правила сложения и вычитания дробей с
одинаковыми знаменателями, учились применять их
при нахождении значения числовых выражений и
решали уравнения. Поднимите руку те, кто доволен
сегодняшним уроком, так как этот урок помог
обобщить и привести все знания по теме «Сложение
и вычитание дробей с одинаковыми знаменателями»
в систему.
– Мне было очень приятно с вами работать. Я
надеюсь, что сведения, которые вы сегодня
услышали на уроке, пригодятся вам в жизни, а
сейчас постарайтесь оценить свою работу на уроке
(на партах карточки с текстом):
1. На уроке я работал активно / пассивно
2. Своей работой на уроке я доволен / не доволен
3. Урок для меня показался коротким / длинным
4. За урок я устал / не устал
5. Мое настроение стало лучше / стало хуже
6. Материал урока мне был:
понятен/ не понятен,
полезен / не полезен,
интересен / скучен
7. Домашнее задание для меня было легким / трудным, интересно / не интересно.