Конус. Основные понятия. Площадь поверхности конуса

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (784 кБ)


Цели урока:

  • Образовательная: ввести понятие конуса, его элементов; рассмотреть построение прямого конуса; рассмотреть нахождение  полной  поверхности конуса; формировать умения решать задачи на нахождение элементов конуса.
  • Развивающая: развивать грамотную математическую речь, логическое мышление.
  • Воспитательная: воспитывать познавательную активность, культуру общения, культуры диалога.

Форма урока: урок формирования новых знаний и умений.

Форма учебной деятельности: коллективная форма работы.

Методы, используемые на уроке: объяснительно-иллюстративный, продуктивный.

Дидактический материал: тетрадь, учебник, ручка, карандаш, линейка, доска, мел и цветные мелки, проектор и презентация «Конус. Основные понятия. Площадь поверхности конуса».

План урока:

  1. Организационный момент (1 мин).
  2. Подготовительный этап (мотивация) (5 мин).
  3. Изучение нового материала (15 мин).
  4. Решение задач на нахождение элементов конуса (15 мин).
  5. Подведение итогов урока (2 мин).
  6. Задание на дом (2 мин).

ХОД УРОКА

1. Организационный момент

Цель: подготовить к усвоению нового материала.

2. Подготовительный этап

Форма: устная работа.

Цель: знакомство с новым телом вращения.

Конус в переводе с греческого “konos” означает “сосновая шишка”.

Встречаются тела в форме конуса. Их можно рассмотреть в различных предметах, начиная с обычного мороженого и заканчивая техникой, так же в детских игрушках (пирамидка, хлопушка и др.), в природе (ель, горы, вулканы, смерчи).

(Используются Слайды 1-7)

Деятельность учителя Деятельность ученика

3. Объяснение нового материала

Цель: ввести новые понятия и свойства конуса.

1. Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов. (Слайд 8)
Теперь рассмотрим, как строится конус. Сначала изображаем окружность с центром O  и прямую OP, перпендикулярную к плоскости этой окружности. Каждую точку окружности соединим отрезком с точкой P (учитель поэтапно строит конус). Поверхность, образованная этими отрезками, называется конической поверхностью, а сами отрезки – образующими конической поверхности.
В тетрадях строят конус.
(диктует определение) (Слайд 9) Тело, ограниченной конической поверхностью и кругом с границей L, называется конусом. Записывают определение.
Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса. Прямая OP, проходящая через центр основания и вершину, называется осью конуса. Ось конуса перпендикулярна плоскости основания. Отрезок OP называется высотой конуса. Точка P называется вершиной конуса, а образующие конической поверхности – образующими конуса. На чертеже подписывают элементы конуса.
Назовите две образующие конуса и сравните их? PA и PB, они равны.
Почему образующие равны? Проекции наклонных равны как радиусы окружности, значит и сами образующие равны.
Запишите в тетради: свойства конуса: (Слайд 10)
1. Все образующие конуса равны.

Назовите углы наклона образующих к основанию? Сравните их.
Почему, докажите это?

 

Углы: PСО, PDO. Они равны.
Так как треугольник PAB – равнобедренный.

2. Углы наклона образующих к основанию равны.

Назовите углы между осью и образующими?
Что можно сказать об этих углах?

 

СРО и DPO
Они равны.

3. Углы между осью и образующими равны.

Назовите углы между осью и основанием?
Чему равны эти углы?

 

POC и POD.
90о

4. Углы между осью и основанием прямые.

Мы будем рассматривать только прямой конус.

 
2. Рассмотрим сечение конуса различными плоскостями.
Что представляет собой секущая плоскость, проходящая через ось конуса?
Треугольник.
Какой это треугольник? Он равнобедренный.
Почему? Две его стороны являются образующими, а они равны.
Что представляет собой основание данного треугольника? Диаметр основания конуса.
Такое сечение называется осевым. (Слайд 11)  Начертите в тетрадях и подпишите это сечение.
Что представляет собой секущая плоскость, перпендикулярная оси OP конуса?
Круг.
Где расположен центр этого круга? На оси конуса.
Это сечение называется круговым сечением.(Сдайл 12)
Начертите в тетрадях и подпишите это сечение.
Существуют и другие виды сечений конуса, которые не являются осевыми и не параллельны основанию конуса. Рассмотрим их на примерах. (Слайд 13)
Чертят в тетрадях.
3. Теперь выведем формулу полной поверхности конуса. (Слайд 14)
Для этого боковую поверхность конуса, как и боковую поверхность цилиндра, можно развернуть на плоскость, разрезав ее по одной из образующих.
 
Что является разверткой боковой поверхности конуса? (чертит на доске) Круговой сектор.
Что является радиусом этого сектора? Образующая конуса.
А длина дуги сектора? Длина окружности.
За площадь боковой поверхности конуса принимается площадь ее развертки. (Слайд 15) , где – градусная мера дуги.
Чему равна площадь кругового сектора?
Значит, чему равна площадь боковой поверхности конуса?

Выразим  через  и . (Слайд 16)
Чему равна длина дуги?

С другой стороны эта же дуга представляет собой длину окружности основания конуса. Чему она равна?

Откуда .

Подставляя  в формулу боковой поверхности конуса получим, .
Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания. .
Запишите эти формулы.
 

Записывают: , .

 4. Название: Решение задач на нахождение элементов конуса.
№ 547. (решаем у доски). (Слайд 17) Дано: см, см.
Найти: .
Решение: – прямоугольный.
,

 ,
см.
Ответ: 17 см.

№ 548 (а) (Слайд 18) Дано: см,
Найти: .
Решение: – прямоугольный. Т.к. , то PO = 6 см.
,
,
см,
,
см2.
Ответ:  см2
№ 549(а) (Слайд 19) Дано: , h = 8 дм.

Найти: РО1

Решение:

=> => .

 дм.

Ответ:  дм.

№ 550 (Слайд 20) Дано: конус,  – прямоугольный, см.
Найти: .

Решение: – равнобедренный (PA = PB как образующие) => углы при основании равны 450;

– прямоугольный, => , т.е. PO = AO = 5 см;

,

 см2.

Ответ: 25 см2.

5. Подведение итогов урока
Решите задачу устно: дано: R = 3, H = 4.
Найти: L.
Итак, мы с вами познакомились с понятием конуса, его элементов и научились решать задачи на нахождение элементов конуса. Вопрос о конусе важен, так как конические детали имеются во многих машинах и механизмах, носовая часть самолетов и ракет имеет коническую форму.
(Слайд 21)
L = 5

6. Домашнее задание. П.55, 56, № 548(б), 549(б). (Слайд 22)