Слайд 1
Цели урока:
- Образовательные: обобщение и систематизация знаний по теме, проверка знаний, умений, навыков. В целях повышения интереса к теме работу вести с помощью опорных конспектов.
- Воспитательные: воспитание мировоззренческого понятия (причинно-следственных связей в окружающем мире), развитие у школьников коммуникативной культуры.
- Развивающие: развитие самостоятельности мышления и интеллекта, умение формулировать выводы по изученному материалу, развитие логического мышления, развитие грамотной устной речи, содержащей физическую терминологию.
Тип урока:систематизация и обобщение знаний.
Слайд 2
Техническая поддержка урока:
- Демонстрации:
- Плакаты.
- Показ слайдов с помощью информационно – компьютерных технологий.
- Дидактический материал:
- Опорные конспекты с подробными записями на столах.
- Оформление доски:
- Плакат с кратким содержанием опорных конспектов (ОК);
- Плакат – рисунок с изображением колебательного контура;
- Плакат – график зависимости колебаний заряда конденсатора, напряжения между обкладками конденсатора, силы тока в катушке от времени, электрической энергии конденсатора, магнитной энергии катушки от времени.
Слайд 3
План урока:
1. Этап повторения пройденного материала.
Проверка домашнего задания.
Четыре группы задач по теме:
- Электромагнитные колебания.
- Колебательный контур.
- Свободные колебания. Свободные колебания – затухающие колебания
- Характеристика колебаний.
2. Этап применения теории к решению задач.
3. Закрепление. Самостоятельная работа.
4. Подведение итогов.
ХОД УРОКА
Учитель: Темой урока является «Решение задач по теме: «Электромагнитные колебания и волны» на примере разбора задач ЕГЭ»
К доске вызываются 3 ученика для проверки домашнего задания.
– Задания по этой теме можно разделить на четыре группы.
Слайд 4
Четыре группы задач по теме:
1. Задачи с использованием общих законов
гармонических колебаний.
2. Задачи о свободных колебаниях конкретных
колебательных систем.
3. Задачи о вынужденных колебаниях.
4. Задачи о волнах различной природы.
– Мы остановимся на решении задач 1 и 2 групп.
Урок начнем с повторения необходимых понятий для данной группы задач.
Слайд 5
Электромагнитные колебания – это периодические и почти периодические изменения заряда, силы тока и напряжения.
Колебательный контур – цепь, состоящая из соединительных проводов, катушки индуктивности и конденсатора.
Свободные колебания – это колебания, происходящие в системе благодаря начальному запасу энергии с частотой, определяемой параметрами самой системы: L, C.
Скорость распространения электромагнитных колебаний равна скорости света: С = 3 . 108(м/с)
Основные характеристики колебаний
Амплитуда (силы тока, заряда, напряжения) –
максимальное значение (силы тока, заряда,
напряжения): Im, Qm, Um
Мгновенные значения (силы тока, заряда,
напряжения) – i, q, u
Слайд 6
Схема колебательного контура
Учитель: Что представляют электромагнитные колебания в контуре?
Слайд 7
Электромагнитные колебания представляют периодический переход электрической энергии конденсатора в магнитную энергию катушки и наоборот согласно закону сохранения энергии.
Слайд 8
Задача №1 (д/з)
Колебательный контур содержит конденсатор емкостью 800 пФ и катушку индуктивности индуктивностью 2 мкГн. Каков период собственных колебаний контура?
Слайд 9
Задача № 2 (д/з)
Колебательный контур состоит из конденсатора емкостью С и катушки индуктивности индуктивностью L. Как изменится период свободных электромагнитных колебаний в этом контуре, если электроемкость конденсатора и индуктивность катушки увеличить в 3р.
Слайд 10
Задача № 3 (д/з)
Амплитуда силы тока при свободных колебаниях в колебательном контуре 100 мА. Какова амплитуда напряжения на конденсаторе колебательного контура, если емкость этого конденсатора 1 мкФ, а индуктивность катушки 1 Гн? Активным сопротивлением пренебречь.
Слайд 11
Схема электромагнитных колебаний
Ученик 1 наглядно описывает процессы в колебательном контуре.
Слайд 12
Ученик 2 комментирует электромагнитные колебания в контуре, используя графическую зависимость заряда, напряжения. Силы тока, электрической энергии конденсатора, магнитной энергии катушки индуктивности от времени.
Слайд 13
Уравнения, описывающие колебательные процессы в контуре:
Обращаем внимание, что колебания силы тока в
цепи опережают колебания напряжения между
обкладками конденсатора на π/2.
Описывая изменения заряда, напряжения и силы
тока по гармоническому закону, необходимо
учитывать связь между функциями синуса и
косинуса.
Слайд 14
Задача № 1.
По графику зависимости силы тока от времени в колебательном контуре определите, какие преобразования энергии происходят в колебательном контуре в интервале времени от 1мкс до 2мкс?
1. Энергия магнитного поля катушки
увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется
в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора
уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора
преобразуется в энергию магнитного поля катушки.
Слайд 15
Задача № 2.
По графику зависимости силы тока от времени в колебательном контуре определите:
а) Сколько раз энергия катушки достигает
максимального значения в течение первых 6 мкс
после начала отсчета?
б) Сколько раз энергия конденсатора достигает
максимального значения в течение первых 6 мкс
после начала отсчета?
в) Определите по графику амплитудное значение
силы тока, период, циклическую частоту, линейную
частоту и напишите уравнение зависимости силы
тока от времени.
Слайд 16
Задача № 3 (д/з)
Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите, какое преобразование энергии происходит в интервале времени от 0 до 2 мкс?
1. Энергия магнитного поля катушки
увеличивается до максимального значения;
2. Энергия магнитного поля катушки преобразуется
в энергию электрического поля конденсатора;
3. Энергия электрического поля конденсатора
уменьшается от максимального значения до «о»;
4. Энергия электрического поля конденсатора
преобразуется в энергию магнитного поля катушки.
Слайд 17
Задача № 4 (д/з)
Дана графическая зависимость напряжения между обкладками конденсатора от времени. По графику определите: сколько раз энергия конденсатора достигает максимального значения в период от нуля до 2мкс? Сколько раз энергия катушки достигает наибольшего значения от нуля до 2 мкс? По графику определите амплитуду колебаний напряжений, период колебаний, циклическую частоту, линейную частоту. Напишите уравнение зависимости напряжения от времени.
Слайд № 18
К доске вызываются 2 ученика
Задача № 5, 6
Слайд 19
Слайд 20
Задача № 7
Заряд на обкладках конденсатора
колебательного контура изменяется по закону
q = 3·10–7cos800πt. Индуктивность контура 2Гн.
Пренебрегая активным сопротивлением, найдите
электроемкость конденсатора и максимальное
значение энергии электрического поля
конденсатора и магнитного поля катушки
индуктивности.
Слайд 21
Слайд 22
Задача № 8
В идеальном колебательном контуре происходят свободные электромагнитные колебания. В таблице показано, как изменяется заряд конденсатора в колебательном контуре с течением времени.
t, 10–6(C) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
q, 10–9(Кл) | 2 | 1,5 | 0 | –1,5 | –2 | –1,5 | 0 | 1,5 | 2 | 1,5 |
1. Напишите уравнение зависимости заряда от времени. Найдите амплитуду колебаний заряда, период, циклическую частоту, линейную частоту.
2. Какова энергия магнитного поля катушки в момент времени t = 5 мкс, если емкость конденсатора 50 пФ.
Домашнее задание. Напишите уравнение зависимости силы тока от времени. Найдите амплитуду колебаний силы тока. Постройте графическую зависимость силы тока от времени.
Слайд 23
Слайд 24
Самостоятельная работа: