Отношение площадей треугольников, имеющих общую высоту (основание)

Разделы: Математика


Цели урока: 

  • Сформировать умение использовать формулу площади треугольника при решении задач;
  • Рассмотреть ключевые задачи об отношении площадей треугольников, имеющих общую высоту (основание). Познакомить учащихся с методами решения задач по теме.

Оборудование урока:

  • Компьютер.
  • Мультимедийный проектор.
  • Экран.

Раздаточный материал.

  • карточки с вопросами для опроса по домашнему заданию;
  • презентация к уроку (Приложение 1);
  • карточки для выполнения самостоятельной работы.

Этапы урока

  1. Организационный момент.
  2. Проверка домашнего задания (усвоение материала предыдущего урока)
  3. Закрепление ранее изученного материала
  4. Самостоятельная работа обучающего характера
  5. Постановка домашнего задания.
  6. Подведение итогов урока.

Ход урока

1. Организационный момент

Сообщаем тему урока. Поясняем важность рассматриваемого на уроке материала, говорим о том, что сведения последних уроков по площадям имеют широкое применение, сегодня на уроке используем их при решении задач.

Для эффективности работы в начале проверим домашнее задание и повторим изученный теоретический материал.

2. Проверка домашнего задания

Опрос учащихся у доски:

  • доказательство теоремы о площади ?.
  • доказательство следствий из неё
  • решение номеров домашнего задания.

В это время с классом работаем устно, по слайдам заранее подготовленной презентации.

1) SABM - ?

2) SMBС - ?

3) Если AM=MC, то сравните площади этих треугольников.

Записать вывод в тетрадь:

Медиана делит треугольник на два равновеликих (равных по площади) треугольника, и площадь каждого из которых равна половине площади данного треугольника.

4)

Дано:

ВМ – медиана АВC

ВК – медиана АВМ

Найдите отношение площадей

5) Известно, что SABС=20см2 (по условию предыдущего задания)

Найти SABМ; SМBС; SABК; SКBС - ?

6)

Чему равно отношение площадей двух треугольников, имеющих общее основание?

Записываем вывод в тетради:

SABС : SADС = BM : DN

Площади треугольников, имеющих общее основание, относятся как высоты, проведенные к основанию.

Далее заслушиваем и обсуждаем теоретические ответы учащихся по ДЗ.

3. Закрепление ранее изученного материала.

1. Выполняем задание №40 стр. 18-19 рабочей тетради по геометрии для 8 кл.

На рисунке точка М делит сторону АС АВС в отношении АМ : МС = 2 : 3

Площадь АВС равна 180 см2. Найдите площадь треугольника АВМ.

2. Решаем задачу №475 учебника.

Начертите АВС. Через вершину А проведите две прямые так, чтобы они разделили этот треугольник на три треугольника, имеющие равные площади.

3.

Обсуждаем решение, используя слайды презентации

4. н/о (если позволяет время)

Данный параллелограмм разделите на три равновеликие части прямыми, выходящими из одной вершины.

Аналогично, ВВ2 делит DВС на треугольники, имеющие одну высоту, их площади относятся как основания DB2 : B2C = 1 : 2 => Алгоритм построения: разделить каждую из сторон AD и DC параллелограмма в отношении 2 :1, считая от вершин А и С.

4. Самостоятельная работа обучающего характера

Вариант -1

1) СК – медиана АВС

SСКВ = 32 см2. Найти SABС

2) SКDM = 40 см2

На стороне КМ отмечена точка А так, что КА : АМ = 2 :3

Найти: SКDА

Вариант - 2

1) АМ – медиана АВС, площадь которого 48 см2

Найти площадь АМС

2) SDРК = 60 см2

На стороне DК отмечена точка А так, что DА : АK = 3 :1

Найти: SAPK -?

5. Постановка домашнего задания

Д.З. по учебнику стр. 124-125 № 473; 506; 511(а)

6. Подведение итогов урока

Презентация.

Литература

1. Геометрия 7-9. / Л.С. Атанасян, В.Ф. Бутузов и др./ “ Просвещение”, ОАО “Московский учебник”,М., 2008;

2. Рабочая тетрадь для 8 кл. об/об учреждений. Геометрия. / Атанасян Л.С. и др. / “Просвещение”, М, 2005;

2. Полонский В.Б., Рабинович Е.М., Якир М.С. / Геометрия: Задачник к школьному курсу М.: АСТ-ПРЕСС: Магистр-S, 1998.