Учебный проект "Нестандартные приемы решения квадратных уравнений"

Разделы: Математика


Введение

Тема «Квадратные уравнения» является одной из самых актуальных. Квадратные уравнения – это фундамент, на котором покоится величественное здание алгебры. Они находят широкое применение в разных разделах математики.

В школьном курсе изучаются формулы корней квадратного уравнения, с помощью которых можно решать любые квадратные уравнения. Однако, имеются и другие приемы решения квадратных уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения.

Проблемный вопрос: существуют ли кроме общепринятых приемов решения квадратных уравнений другие, которые позволяют быстро и рационально решать квадратные уравнения?

Гипотеза: установление связи между коэффициентами и корнями квадратного уравнения позволит найти эффективные приемы быстрого решения квадратного уравнения.

Цель: установив связь между коэффициентами и корнями квадратного уравнения, найти новые рациональные приемы решения уравнений

Задачи:

  • Изучить литературу по истории приемов решения квадратных уравнений
  • Обобщить накопленные знания о квадратных уравнениях и способах их решения.
  • Установить зависимость корней квадратного уравнения от его коэффициентов и найти эффективные приемы быстрого решения квадратного уравнения, в том числе с большими коэффициентами.
  • Сделать выводы.
  • Разработать дидактический материал для проведения практикума по решению квадратных уравнений с использованием новых приемов в помощь ученикам, увлеченным математикой и учителям, ведущим факультативные занятия.

Объект исследования: квадратные уравнения

Предмет изучения: методы и приемы решения квадратных уравнений, в том числе с большими коэффициентами

Глава 1.
Изучение литературы

Основной материал, связанный с изучением темы «Квадратные уравнения» находится в УМК под ред.С.А.Теляковского. В учебнике разобраны все основные вопросы по теме:

1. Определение и виды квадратных уравнений

2. Основные методы решения квадратных уравнений

Однако, дополнительный материал, связанный с историей вопроса о возникновении квадратных уравнений можно найти в «Энциклопедия по математике» «Занимательная математика», М., 2007. Способы решения задач на квадратные уравнения в полном объёме раскрыты в изданиях «Сборник элективных курсов» Волгоград, 2006 г.

Изученная литература позволила приобрести новые интересные знания по истории возникновения квадратного уравнения, приобрести опыт по решению различных квадратных уравнений и перейти к следующему этапу в исследовании – перенести полученные знания в нестандартную ситуацию.

Глава 2.
Изучение истории вопроса о квадратных уравнениях

Глава 3.
Обобщение имеющихся знаний о квадратных уравнениях и способах их решения

Глава 4.
Нестандартные приемы решения квадратных уравнений

Дидактический материал по применению нестандартных приемов решения квадратных уравнений.

1. Найди наиболее рациональным способом корни уравнения:

2 – 13х + 9 =0
(1; 2,25)

1978х2 – 1984х + 6=0
(1; 6/1978)

2 + 11х + 7 = 0
(-1; -7/4)

319х2 + 1988х +1669=0
(-1; -1669/319)

1999х2 + 2000х+1=0
(-1; -1/1999)

2. Решить квадратные уравнения с большими коэффициентами

313х2 +326х+13=0
(-1; -13/313)

839х2– 448х -391=0
(1; -391/839)

345х2 – 137х – 208=0
(1;.-208/345)

939х2+978х+39=0
(-1; -39/939)

3. Используя полученные знания, установи соответствие:

1) х2+5х+6=0
2) 6х2-5х+1=0
3) 2х2-5х+3=0
4) 3х2-5х+2=0
5) х2-5х+6=0
6) 6х2+5х+1=0
7) 2х2+5х+2=0
8) 3х2+5х+2=0
1) 1/6;1/2
2) 1; 3/2
3) 1; 2/3
4) -2; -3
5) -1/3 ; -1/2
6) -1; -3/2
7) -1; -2/3
8) 2;3

Глава 5.
Анализ работы учащихся по решению квадратных уравнений нестандартными способами

Разработаны критерии оценки проведенного практикума:

  1. За каждое верно выполненное задание ставится 1 балл;
  2. Наиболее возможное количество набранных баллов-17
  3. Если ученик набирает менее

7 баллов, то выставляется оценка «2»
от 7 до 11 баллов «3»
от 12 до 15 баллов «4»
от 16-17 баллов «5»

Результаты практикума.

Выполняли работу – 11человек

Набрали баллов

от 16-17 – 5человек (45%)
от 12-15– 6человек (55%)
Менее 12 – 0 человек

Средний балл – 4,45

Процент качества – 100%

Типичные ошибки, допущенные в работе связаны с невнимательностью учащихся.

Выводы по результатам проведения практикума

Успешно выполненная работа учащимися 8 класса, позволяет сделать следующие выводы:

  • нестандартные приемы решения квадратных уравнений заслуживают внимания;
  • позволяют экономить время решения, что обусловлено применением тестовой системы экзаменов.

Глава 6.
Выводы

В процессе работы над проектом, была создана система нестандартных приемов решения квадратных уравнений и разработан банк заданий, на основе которого проведена успешная апробация этих приемов.

Данный материал можно рекомендовать для внеклассных и факультативных занятий по математике. Учителя могут использовать его как методическое пособие при изучении темы «Решение квадратных уравнений», а также, для контроля за знаниями учащихся.

Материалом этого проекта могут воспользоваться и те, кто любит математику и хочет знать о математике больше.

Литература

  1. Выгодский М.Я. Справочник по элементарной математике. – М. государственное издательство физико-математической литературы, 1970.
  2. Галицкий М.Л., Гольдман М., Звавич Л.И. Сборник задач по алгебре для 8-9 классов: учебное пособие для учащихся школ и классов с углубленным изучением математики:4-е изд.-М.: Просвещение, 1997.
  3. Макарычев Ю.Н., Миндюк Н.Г. Алгебра. Учебник для 8 класса. М., Просвещение, 2001.
  4. Макарычев Ю.Н., Миндюк Н.Г. Дополнительные главы к школьному учебнику. 8 класс М., Просвещение, 1996.
  5. Штейнгауз В.Г. Математический калейдоскоп. – М.: Бюро «Квантум», 2005.
  6. Энциклопедический словарь юного математика. – М.: Педагогика, 1985.