При помощи учащихся класса были повторены способ подстановки и сложения. Графический – был рассмотрен вместе (слайды показывались на стене): дети рассказывали о функции и схематически изображали её график мелом, затем выцветал правильный и, было видно, прав ли ученик. В этом способе повторили нахождение координат данной точки, их запись.
Далее устно рассматривались решения различных тестовых заданий, где применялся графический способ решения систем уравнений.
В конце урока проводится маленькая самостоятельная работа с аналогичными заданиями.
Цели:
- повторить способы решения систем уравнений;
- акцентировать внимание на возможность решения систем различными способами;
- научить, при решении систем уравнений, записывать верно ответ
- продолжить обучать умению
- планировать самостоятельную работу;
- осваивать информацию и логически ее перерабатывать;
- вырабатывать собственную позицию, обосновывать ее и защищать (обосновывать свой способ решения, свой результат).
Оборудование:
- компьютер,
- мультимедийный проектор,
- карточки.
I этап урока (организационный)
Учитель сообщает тему урока, цели.
Слайды 1, 2
II этап урока (повторение)
1. Как вы понимаете выражение – «система
уравнений»?
2. Что значит: решить систему уравнений? (Решить
систему – это значит найти пару значений
переменных, которая обращает каждое
уравнение системы в верное равенство.)
3. Какие способы решения систем вы знаете? (Подстановки,
сложения и графический.)
Вспомнить эти способы нам помогут …
Предварительно по работе с системами подготовлены и проверены ученики данного класса.
1. Способ подстановки
О решении систем этим способом рассказывает …
Слайд 3
Далее вместе с классом решаем систему этим способом на доске и в тетради.
Ответ: (0; 3); (–3; 6)
2. Способ сложения
О решении систем этим способом рассказывает …
Слайд 4
Далее вместе с классом решаем систему этим способом на доске и в тетради.
Ответ: (4; 1); (–1; –4)
3. Графический способ.
Рассказывает учитель с помощью всех учащихся.
Слайд 5
- Что нужно сделать для решения систем графическим способом? (Построить графики функций и найти координаты точек пересечения графиков. Для этого из каждого уравнения нужно выразить переменную у.)
- Выразим из обоих уравнений переменную у.
- Что можно сказать о первом уравнении? (Это уравнение функции обратной пропорциональности. График – гипербола, состоящая из двух ветвей, расположенных в первой и третьей координатных четвертях.)
- Как построить гиперболу? (Строим на доске, проверяем с помощью слайда)
- Что можно сказать о втором уравнении? (Это уравнение квадратичной функции. График – парабола, полученная из графика функции путём перемещения на три единицы вверх по оси ординат.)
- Сколько точек пересечения получили? (1)
- Как найти её координаты?
- От чего зависит количество решений системы уравнений? (От количества точек пересечения графиков функций.)
Физминутка
Выполняем несколько заданий из материалов ГИА (по слайдам)
Задание №1. Слайд 6
Задание №2. Слайд 7
Задание №3. Слайд 8
Задание №4 Слайд 9
Задание №5. Слайд 10
Запишем домашнее задание: П 3.5, с 150.
№ 434 (а) – способ сложения;
№ 435 (а) – способ подстановки;
№ 436 (а) – графически.
III этап урока (заключительный)
Самостоятельная работа по вариантам.
Вариант 1.
Задание 1
Задание 2.
Решить системы уравнений:
Вариант 2.
Задание 1
Задание 2.
Решить системы уравнений: