Материал для занятий кружка "Логическая математика" по теме "Пентамино"

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (2 МБ)


Полимино

В этой статье мы будем рассматривать полимино – фигуры, составленные из одноклеточных квадратов так, что каждый квадрат примыкает хотя бы к одному соседнему, имеющему с ним общую сторону.

Задачи с полимино очень характерны для комбинаторной геометрии – раздела математики, занимающегося вопросами взаимного расположения и комбинирования геометрических фигур. Это очень красивая, но еще почти не разработанная ветвь математики, поскольку общих методов в ней, по-видимому, очень мало, а известные ныне методы настолько примитивны, что не поддаются усовершенствованию. Многие встречающиеся в практике важные инженерные задачи – в первую очередь те, которые связаны в том или ином смысле с оптимальным расположением фигур заданной формы, – по существу относятся к комбинаторной геометрии.

В последующих комбинаторных задачах предполагается, что полимино можно вращать (то есть поворачивать на 90, 180 или 270) и зеркально отражать (переворачивать), не меняя формы самих фигур.

Домино


Рис. 1

Домино состоит из двух квадратов и может иметь лишь одну форму – форму прямоугольника размером 1×2 (см. рис. 1). Первая связанная с домино задача, вероятно, многим знакома: даны шахматная доска, из которой вырезана пара противоположных угловых клеток, и коробка домино, каждое из которых покрывает ровно две клетки шахматной доски (см. рис. 2). Возможно ли целиком покрыть доску с помощью 31 кости домино (без свободных клеток и наложений)? Ответ на этот вопрос гласит: «НЕТ» и имеет замечательное доказательство. Шахматная доска содержит 64 чередующиеся клетки белой и черной раскраски (имеется в виду обычная шахматная раскраска доски). Каждая положенная на такую доску и покрывающая две соседние клетки кость домино покроет одно белое и одно черное поле, а n костей домино – n белых и n черных полей, т.е. поровну и тех и других. Но изображенная на рисунке шахматная доска содержит больше черных клеток, чем белых, и потому ее нельзя покрыть костями домино. Этот результат есть типичная теорема комбинаторной геометрии.


Рис. 2

Тримино


Рис. 3

Тримино (или триомино) — полимино третьего порядка, то есть многоугольник, полученный путём объединения трёх равных квадратов, соединённых сторонами. Если повороты и зеркальные отражения не считать различными формами, то существует только две «свободных» формы тримино (см. рис.3): прямое (I-образное) и угловое (L-образное).

Тетрамино


Рис. 4

С тетрамино связано множество задач на составление из них разных фигур. Доказано, что сложить какой-либо прямоугольник из полного набора тетрамино невозможно. Доказательство использует раскраску в шахматном порядке. Все тетрамино, кроме Т-образного, содержат 2 чёрные и 2 белые клетки, а Т-образное тетрамино — 3 клетки одного цвета и 1 клетку другого. Поэтому любая фигура из полного набора тетрамино (см. рис.4) будет содержать клеток одного цвета на две больше, чем другого. Но любой прямоугольник, с чётным количеством клеток, содержит равное число чёрных и белых клеток.

Пентамино


Рис. 5

Полимино, покрывающее пять клеток шахматной доски, называются пентамино. Существует 12 видов пентамино, которые можно обозначить прописными латинскими буквами, как указано на рисунке (см. рис. 5). В качестве приема, позволяющего легко запомнить эти наименования, укажем, что соответствующие буквы составляют конец латинского алфавита (TUVWXYZ) и входят в имя FiLiPiNo. Поскольку всего имеется 12 разных пентамино и каждая из этих фигур покрывает пять клеток, то вместе они покрывают 60 клеток.

Самая распространённая задача о пентамино — сложить из всех фигурок, без перекрытий и зазоров, прямоугольник. Поскольку каждая из 12 фигур включает в себя 5 квадратов, то прямоугольник должен быть площадью 60 единичных квадратов. Возможны прямоугольники 6×10, 5×12, 4×15 и 3×20 (см. рис. 6).


Рис. 6

Для случая 6×10 эту задачу впервые решил в 1965 году Джон Флетчер. Существует ровно 2339 различных укладок пентамино в прямоугольник 6×10, не считая поворотов и отражений целого прямоугольника, но считая повороты и отражения его частей (иногда внутри прямоугольника образуется симметричная комбинация фигур, поворачивая которую можно получить дополнительные решения).

Для прямоугольника 5×12 существует 1010 решений, 4×15 — 368 решений, 3×20 — всего 2 решения (отличающихся вышеописанным поворотом). В частности, существует 16 способов сложить два прямоугольника 5×6, из которых можно составить как прямоугольник 6×10, так и 5×12.

Еще одна интересная задача о пентамино - задача об утроении фигур пентамино (см. рис. 7). Эта задача была предложена профессором Калифорнийского университета Р.М.Робинсоном. Выбрав одну из 12 фигур пентамино, необходимо построить из каких-либо 9 из 11 оставшихся пентамино фигуру, подобную выбранной, но в 3 раза бо́льшей длины и ширины. Решение существует для любого из 12 пентамино, причём не единственное (от 15 решений для Х до 497 для Р). Существует вариант этой задачи, в котором для построения утроенной фигуры разрешается использовать также и саму исходную фигуру. В этом случае число решений от 20 для Х до 9144 для Р-пентамино.


Рис. 7

Комментарии к презентации «Пентамино»

В этой работе я предлагаю несколько заданий с использованием фигур пентамино, которые можно использовать и для самых первых занятий с этой головоломкой, и для более подготовленных ребят. Они подойдут и для начальной школы, и для учащихся 5-7 классов (в зависимости от уровня обучающихся).

Для работы нам потребуется комплект, состоящий из двенадцати деталей пентамино. Его очень легко сделать самим на уроке или дома. На листе в клетку нужно нарисовать фигуры так, чтобы каждая состояла из пяти квадратов со стороной 1см. Затем следует приклеить лист в клетку на картон и вырезать по контуру получившиеся фигурки. При желании их можно раскрасить цветными карандашами или фломастерами. Пентамино готово.

Начинается презентация с самых простых заданий. Нужно из всех двенадцати фигурок пентамино отложить только те, из которых собирается данная картинка. Фигурки в презентации появляются по щелчку по одной, чтобы было удобно их находить.

На следующем слайде представлена картинка, которую нужно собрать. А на третьем слайде предложен вариант ответа. Таких задач в презентации четыре, но их количество всегда можно увеличить по мере необходимости.

Начиная с пятой задачи, учащиеся сами должны выбрать фигурки, которые будут использованы для данной картинки. В задаче №5 для «собачки» потребуются три фигурки пентамино.

В задаче №6 ребята должны не только собрать данные картинки, но и попытаться объяснить, почему может быть представлено только единственное решение этих задач.

В задачах №7 и №8 решений может быть несколько, и можно устроить соревнования «кто первый найдет все возможные решения этих задач».

Начиная с задачи №9, решений становится гораздо больше. Найти все решения на уроке не получится. Эти задачи можно предложить как вариант домашнего задания или предложить найти решения, разбив класс на группы.

В задачах №13 и №14 при решении используются все двенадцать фигур пентамино. Это уже достаточно сложные задания. С ними могут справиться не все учащиеся 5-6 классов. Поэтому те ребята, которые нашли решения этих задач, должны быть поощрены.

Очень интересный результат можно получить, предложив ребятам самим придумать различные картинки, составленные из фигур пентамино. Если это начальные классы, то нужно оговорить, что можно использовать не все фигуры сразу. В более старших классах учащиеся могут использовать весь комплект. Здесь следует напомнить, что каждая фигурка встречается ровно однажды и нельзя использовать какие-то детали более одного раза.

И вообще, очень трудно охватить такой огромный материал в одной презентации. Я предложила только малую толику того, что может быть придумано из пентамино. Творите, и результат превзойдет все ваши самые смелые ожидания. Ваши дети очень талантливы, и нужно только направить их мысль в нужную сторону. А там…

Литература:

  1. С.В. Голомб «Полимино», издательство «Мир», М., 1975.
  2. М.А. Екимова, Г.П. Кукин «Задачи на разрезание», МЦНМО, М., 2007.
  3. ru.wikipedia.org