Цели урока (Слайд 1):
- Обучающие:
Оборудование: доска, мел, линейка, карточки – задания для индивидуальной работы, наглядность, презентация.
Ход урока
1. Организационный момент.
а) Отметить отсутствующих;
б) объявить тему урока;
в) объявить цели урока.
2. Фронтальный опрос правил и определений по теме урока. В параллели проводится индивидуальная работа (Приложение 1) с учащимися, имеющими слабую мотивацию к учебе.
Какие способы решения систем уравнений с двумя переменными знаете?
(Графический, подстановки, сложения) (Слайд 3).
Рассмотрим графический способ. (Слайд 4)
- Как решается система графическим способом?
(Необходимо: построить графики уравнения в одной координатной плоскости; найти координаты точек пересечения графиков, которые и будут решением системы.) - Почему координаты точек пересечения являются решением системы уравнений?
(Координаты точек пересечения удовлетворяют каждому уравнению системы.) - Как записывается решение системы уравнений, если она решается
графическим способом?
(Приближенным равенством для значений переменных.) - От чего зависит количество решений системы уравнений при графическом
способе решения?
(От количества точек пересечения.) - Сколько точек имеют графики, если система имеет три решения? (Три точки.)
3. Работа с наглядностью. (Слайды 5, 6)
- Сколько точек пересечения имеют графики. (Приложение 2)
- Сколько решений имеет система, если графики изображены на рисунке. (Приложение 2)
- Совместить графики уравнений с формулами, которыми они задаются. (Приложение 3)
4. Самостоятельная работа 1 (слайд 7) с использованием шаблонов координатной плоскости.
Изобразив схематически графики уравнений, укажите количество решений системы.
Ответ:
5. При графическом способе решения мы находим приближенные значения переменных. А как же найти точные значения?
(Решить систему способом подстановки или сложения.)
- Как решить систему способом подстановки? (Слайд 8)
(Выражают из уравнения одну переменную через другую. Подставляют эту подстановку в другое уравнение. Решают полученное уравнение с одной переменной. Находят соответствующие значение второй переменной, из подстановки). - Есть ли разница, из какого уравнения системы получить подстановку?
(Нет. Если в систему входит уравнение 1-ой степени, то подстановку получают из этого уравнения. Если оба уравнения второй степени, то подстановку получают из любого.) - Как записать решение системы? (Парой чисел.)
- Как решить систему способом сложения? (Слайд 13)
6. Устная работа. В параллели проводится индивидуальная работа с учащимися средней мотивации к учебе (Приложение 4)
а) Определите степень уравнения (Слайд 9):
Ответ:
2 | 1 | 2 | 2 | 1 |
б) Выразите одну переменную через другую (слайд 10):
в) Решите систему уравнений (Слайд 11):
Ответ:
Решений нет | (-1; 2) ; (-2; 1) | (1,6; 3) | (10;1,8) |
г) Определите корни уравнения (Слайд 12):
Ответ:
-1; 4 | 3; 4 | -4; -2 |
6. Работа в тетрадях (Слайд 14): № 440 (а), 433(а), 448(а), 443(а), [438].
7. Самостоятельная работа 2. (Слайд 15)
Решите систему уравнений.
Ответ:
Вариант 1 | Вариант 2 |
(-4;-5); (2;1) | (-6;-9); (8;5) |
Решений нет | (4;-1); (-4;1) |
(-0,5;-11); (8; 6) | (-4;-5); (14;4) |
(-0,4;0,3); (3;2) | Решений нет |
(3;1) |
8. Подведение итогов. Занести результаты каждого ученика в оценочный лист.
№ п/п | Ф.И. ученика |
Индивидуальная | Устная | Самостоятельная 1 |
Самостоятельная 2 |
Письменная | Итоговая оценка |
1. | |||||||
2. | |||||||
3. |
9. Домашнее задание (Слайд 16): п.18–19, с.109–112, № 433 (б), 440(б), 448(б), 443(б).
Литература:
- Учебник “Алгебра 9 класс”, авторы: Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова, “Просвещение”, 2008.
- Уроки алгебры в 9 классе, авторы В.И.Жохов, Л.Б.Крайнева, “Вербум-М”, 2000.
- Дидактические материалы по алгебре 9 класс, авторы В.И.Жохов и др., “Просвещение”, 2009.
- Открытый банк задач по ГИА.