Урок в 11-м классе по теме "Решение неравенств"

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (501 кБ)


Тип урока: урок применения знаний, умений, навыков в новой ситуации.

Цели урока:

  • обучающая: в результате урока учащиеся обобщают и систематизируют знания по теме «Неравенства», знакомятся с новым способом решения некоторых логарифмических неравенств.
  • развивающая: в результате урока учащиеся учатся анализировать, выделять главное, доказывать и опровергать логические выводы;
  • воспитательная: в результате урока учащиеся развивают коммуникативные навыки, ответственное отношение к достижению цели.

Оборудование компьютер, мультимедийный проектор.

Ход урока

I. Актуализация опорных знаний

«Решение неравенств» – тема очень актуальная в математике. С неравенствами мы встречались на уроках алгебры, начиная с 8 класса. Мы рассматривали разные виды и разные способы решения неравенств. Сегодня мы вспомним основные виды неравенств, назовём способы их решений и познакомимся с некоторыми приёмами, упрощающими их решения. Слайд 1

Чтобы решать сложные неравенства, надо хорошо знать решение простейших неравенств.

Сообщение учащегося

1. Виды неравенств и их решение.

Вид неравенства  Решение 
Линейные
Содержащие чётную степень 
Содержащие нечётную степень
 
Иррациональные
Иррациональные
Показательные
 


Логарифмические

Тригонометрические
При решении используют тригонометрическую окружность или график соответствующей функции

Вопрос учащимся: Какие преобразования используют при решении неравенств?

Учащиеся называют: возведение в чётную или нечётную степень, логарифмирование, потенцирование, применение формул, позволяющие привести неравенство к более простому виду.

Вопрос: Что может произойти с множеством решений неравенства в процессе преобразований?

Учащиеся отмечают, что множество решений либо не меняется, либо расширяется (можно получить посторонние решения), либо сужается (можно потерять решения).

Поэтому важно знать какие преобразования неравенств, являются равносильными и при каких условиях.

Сообщение учащегося

2. Равносильность неравенств.

Перечислим некоторые преобразования неравенств, приводящие данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел.

  1. Перенос члена неравенства (с противоположным знаком) из одной части неравенства в другую;
  2. Умножение (деление) обеих частей неравенства на положительное число;
  3. Применение правил умножения многочленов и формул сокращённого умножения;
  4. Приведение подобных членов многочлена;
  5. Возведение неравенства в нечётную степень;
  6. Логарифмирование неравенства , т.е замена этого неравенства неравенством

Назовем преобразования неравенств, приводящие исходное неравенство к неравенству равносильному ему на некотором множестве чисел

  1. Возведение неравенства в чётную степень; (на множестве где обе функции неотрицательны)
  2. Потенцирование неравенства; (на множестве где обе функции положительны)
  3. Умножение обеих частей неравенства на функцию; (на множестве где функция положительна)
  4. Применение некоторых формул (логарифмических, тригонометрических и др.) (на множестве где одновременно определены обе части применяемой формулы)

Фронтальная работа

Вопрос учащимся: Равносильны ли неравенства? Почему?


4)

II. Изучение нового материала

Учитель: В зависимости от интерпретации неравенства различают

  • алгебраический
  • функциональный
  • графический
  • геометрический

подходы в решении неравенств. При алгебраическом подходе выполняют равносильные общие или частичные преобразования неравенств. При функциональном подходе используют свойства функций (монотонность, ограниченность и т.д.). Основой геометрического подхода является интерпретация неравенств и их решений на координатной прямой, координатной плоскости или в пространстве. В некоторых случаях алгебраический и функциональный подходы взаимно заменяемые.

Среди алгебраических методов решения неравенств выделяют:

  • Сведение неравенства к равносильной системе или совокупности систем
  • Метод замены
  • Разбиение области определения неравенства на подмножества

Говорят, что лучше решить одно неравенство, но разными способами, чем несколько неравенств одним и тем же способом. Поиски разных способов решения, рассмотрение всех возможных случаев, критическая оценка их с целью выделения наиболее рационального, красивого, является важным фактором развития математического мышления, уводят от шаблона. Поэтому сегодня мы попытаемся искать наиболее рациональные способы решения неравенств.

Логарифмическое неравенство можно свести к равносильной совокупности систем неравенств

 

Решите неравенство: (учащиеся работают в группах)

Ответ:

Учитель: Оказывается, что данное неравенство можно решить иначе.

Зная свойства логарифма о том, что logа b < 0, если a и b по разные стороны от 1, log a b > 0, если a и b по одну сторону от 1, можно получить очень интересный и неожиданный способ решения неравенства. Об этом способе написано в статье “Некоторые полезные логарифмические соотношения” в журнале “Квант” № 10 за 1990 год.

Решите это неравенство, используя новые соотношения (ученик у доски)

Ответ:  

Оказывается, что при решении некоторых логарифмических неравенств можно использовать и другие соотношения 

Заменяемое выражение Используемое выражение  

Решите неравенство

у доски составляем систему, которую решают самостоятельно

III. Домашнее задание

Обязательное задание

1. Решите неравенство

2. Повторите методы решения тригонометрических неравенств.

+ для сильных учащихся

2. Решите неравенство

IV. Итог урока

Что нового узнали на уроке?

Можно ли данный материал использовать при выполнении заданий ЕГЭ?

Каждый ученик получает буклет Решение неравенств. Приложение