Урок в 11-м классе по теме "Решение неравенств"

11.04.2012

Скачать презентацию (501.25 КБ)

Тип урока: урок применения знаний, умений, навыков в новой ситуации.

Цели урока:

  • обучающая: в результате урока учащиеся обобщают и систематизируют знания по теме «Неравенства», знакомятся с новым способом решения некоторых логарифмических неравенств.
  • развивающая: в результате урока учащиеся учатся анализировать, выделять главное, доказывать и опровергать логические выводы;
  • воспитательная: в результате урока учащиеся развивают коммуникативные навыки, ответственное отношение к достижению цели.

Оборудование компьютер, мультимедийный проектор.

Ход урока

I. Актуализация опорных знаний

«Решение неравенств» – тема очень актуальная в математике. С неравенствами мы встречались на уроках алгебры, начиная с 8 класса. Мы рассматривали разные виды и разные способы решения неравенств. Сегодня мы вспомним основные виды неравенств, назовём способы их решений и познакомимся с некоторыми приёмами, упрощающими их решения. Слайд 1

Чтобы решать сложные неравенства, надо хорошо знать решение простейших неравенств.

Сообщение учащегося

1. Виды неравенств и их решение.

Вид неравенства  Решение 
Линейные
Содержащие чётную степень 
Содержащие нечётную степень
 
Иррациональные
Иррациональные
Показательные
 


Логарифмические

Тригонометрические
При решении используют тригонометрическую окружность или график соответствующей функции

Вопрос учащимся: Какие преобразования используют при решении неравенств?

Учащиеся называют: возведение в чётную или нечётную степень, логарифмирование, потенцирование, применение формул, позволяющие привести неравенство к более простому виду.

Вопрос: Что может произойти с множеством решений неравенства в процессе преобразований?

Учащиеся отмечают, что множество решений либо не меняется, либо расширяется (можно получить посторонние решения), либо сужается (можно потерять решения).

Поэтому важно знать какие преобразования неравенств, являются равносильными и при каких условиях.

Сообщение учащегося

2. Равносильность неравенств.

Перечислим некоторые преобразования неравенств, приводящие данное неравенство к неравенству, равносильному ему на множестве всех действительных чисел.

  1. Перенос члена неравенства (с противоположным знаком) из одной части неравенства в другую;
  2. Умножение (деление) обеих частей неравенства на положительное число;
  3. Применение правил умножения многочленов и формул сокращённого умножения;
  4. Приведение подобных членов многочлена;
  5. Возведение неравенства в нечётную степень;
  6. Логарифмирование неравенства , т.е замена этого неравенства неравенством

Назовем преобразования неравенств, приводящие исходное неравенство к неравенству равносильному ему на некотором множестве чисел

  1. Возведение неравенства в чётную степень; (на множестве где обе функции неотрицательны)
  2. Потенцирование неравенства; (на множестве где обе функции положительны)
  3. Умножение обеих частей неравенства на функцию; (на множестве где функция положительна)
  4. Применение некоторых формул (логарифмических, тригонометрических и др.) (на множестве где одновременно определены обе части применяемой формулы)

Фронтальная работа

Вопрос учащимся: Равносильны ли неравенства? Почему?


4)

II. Изучение нового материала

Учитель: В зависимости от интерпретации неравенства различают

  • алгебраический
  • функциональный
  • графический
  • геометрический

подходы в решении неравенств. При алгебраическом подходе выполняют равносильные общие или частичные преобразования неравенств. При функциональном подходе используют свойства функций (монотонность, ограниченность и т.д.). Основой геометрического подхода является интерпретация неравенств и их решений на координатной прямой, координатной плоскости или в пространстве. В некоторых случаях алгебраический и функциональный подходы взаимно заменяемые.

Среди алгебраических методов решения неравенств выделяют:

  • Сведение неравенства к равносильной системе или совокупности систем
  • Метод замены
  • Разбиение области определения неравенства на подмножества

Говорят, что лучше решить одно неравенство, но разными способами, чем несколько неравенств одним и тем же способом. Поиски разных способов решения, рассмотрение всех возможных случаев, критическая оценка их с целью выделения наиболее рационального, красивого, является важным фактором развития математического мышления, уводят от шаблона. Поэтому сегодня мы попытаемся искать наиболее рациональные способы решения неравенств.

Логарифмическое неравенство можно свести к равносильной совокупности систем неравенств

 

Решите неравенство: (учащиеся работают в группах)

Ответ:

Учитель: Оказывается, что данное неравенство можно решить иначе.

Зная свойства логарифма о том, что logа b < 0, если a и b по разные стороны от 1, log a b > 0, если a и b по одну сторону от 1, можно получить очень интересный и неожиданный способ решения неравенства. Об этом способе написано в статье “Некоторые полезные логарифмические соотношения” в журнале “Квант” № 10 за 1990 год.

Решите это неравенство, используя новые соотношения (ученик у доски)

Ответ:  

Оказывается, что при решении некоторых логарифмических неравенств можно использовать и другие соотношения 

Заменяемое выражение Используемое выражение  

Решите неравенство

у доски составляем систему, которую решают самостоятельно

III. Домашнее задание

Обязательное задание

1. Решите неравенство

2. Повторите методы решения тригонометрических неравенств.

+ для сильных учащихся

2. Решите неравенство

IV. Итог урока

Что нового узнали на уроке?

Можно ли данный материал использовать при выполнении заданий ЕГЭ?

Каждый ученик получает буклет Решение неравенств. Приложение


aid: 607829