Решение логарифмических уравнений и систем уравнений. Подготовка к ЕГЭ

Разделы: Математика


Ученик проходит в несколько лет дорогу, на которую человечество употребило тысячелетие.
Однако его следует вести к цели не с завязанными глазами, а зрячим:
он должен воспринимать истину, не как готовый результат, а должен её открывать.
Учитель должен руководить этой экспедицией открытий, следовательно, также присутствовать
не только в качестве простого зрителя. Но ученик должен напрягать свои силы;
ему ничто не должно доставаться даром.
Даётся только тому, кто стремится.
(А. Дистервег)

Форма урока: комбинированный урок

Тип урока: Урок повторного контроля знаний.

Обобщение и закрепление пройденного материала.

Цели урока:

  • Образовательная - обобщение знаний учащихся по теме "Логарифмические уравнения и системы уравнений; закрепить основные приемы и методы решения логарифмических уравнений и систем уравнений; ознакомить учащихся с видами заданий повышенной сложности по данной теме в ЕГЭ.
  • Развивающая - развитие логического мышления для сознательного восприятия учебного материала, внимание, зрительную память, активность учащихся на уроке. Предоставить каждому из учащихся проверить свой уровень подготовки по данной теме.
  • Воспитывающая - воспитание познавательной активности, формирование личностных качеств: точность и ясность словесного выражения мысли; сосредоточенность и внимание; настойчивость и ответственность, положительной мотивации к изучению предмета, аккуратности, добросовестности и чувство ответственности. Осуществить индивидуальный подход и педагогическую поддержку каждого ученика через разноуровневые задания и благоприятную психологическую атмосферу.

Задачи урока:

  • выработать у учащихся умение пользоваться алгоритмом решения логарифмических уравнений.
  • осуществить формирование первоначальных знаний в виде отдельных навыков после определенной тренировки решения уравнений и систем уравнений.
  • познакомить учащихся с частными случаями и отработать навыки по решению таких уравнений и систем уравнений.

Методы и педагогические приемы:

  • Методы самообучения
  • Приемы устного опроса.
  • Приемы письменного контроля.
  • Коллективная учебная деятельность.
  • Организация работы в группах.
  • Повышение интереса к учебному материалу.

Оборудование:

  • компьютер, мультимедийный проектор и экран;
  • тетради;

Раздаточный материал: задания для самостоятельной работы.

План урока:

  1. Организационный момент (1 мин)
  2. Проверка домашнего задания (3 мин)
  3. Входной контроль (повторение теоретического материала) (15 мин)
  4. Этап обобщения знаний учащихся. Решение уравнений и систем уравнений (45 мин)
  5. Разноуровневая самостоятельная работа (проверка знаний учащихся) (20 мин)
  6. Итоги урока (4 мин)
  7. Домашнее задание (2 мин)

Ход урока

1. Организационный момент

Взаимное приветствие; проверка готовности учащихся к уроку, организация внимания.

2. Проверка домашнего задания

Установить правильность и осознанность выполнения домашнего задания всеми учащимися; установить пробелы в знаниях.

3. Входной контроль (повторение теоретического материала)

Организация устной фронтальной работы с классом по повторению логарифмических формул и способов решения логарифмических уравнений.

Решение простейших уравнений:

Сравните числа:

а) и

б) и

2) Найдите Х, если х>0:

[1/5]

[4]

Перечислите: основные способы решения логарифмических уравнений.

Способы решения логарифмических уравнений

  • По определению логарифма.
  • Метод потенцирования.
  • Метод введения новой переменной.
  • Решение уравнений логарифмированием его обеих частей.
  • Функционально-графический способ.

На экране уравнения:

  1. log2(3 - 6x) = 3
  2. lg(х2 - 2х) = lg (2х + 12)
  3. 5х + 1 - 5 х - 1 = 24
  4. хlg х = 10000
  5. 32х + 5 = 3х + 2 + 2
  6. log32x - log3 x = 3
  7. log2x - log4x = 3
  8. 2x = x2 - 2x

Среди данных уравнений выбрать логарифмические. Определить способ решения каждого уравнения. Решите уравнения.

По окончанию работы правильность решения уравнений осуществляется с помощью экрана.

Устно ответить на следующие вопросы (если имеется не один корень):

  • Найти наименьший корень уравнения.
  • Найти сумму корней уравнения.
  • Найти разность корней уравнения.
  • Найти произведение корней уравнения.
  • Найти частное корней уравнения

Самооценка и взаимооценка деятельности учащихся (результаты заносятся в листы самоконтроля).

4. Этап обобщения знаний учащихся

Решение логарифмических уравнений из заданий ЕГЭ части В и С.

№ 1 (В) Найдите корень (или сумму корней, если их несколько) уравнения  log6(3x + 88) - log6 11 = log6 x. [1]

№ 2 (B) Найдите произведение всех корней уравнения

. [1]

№ 3 (B) Найдите сумму корней уравнения = log4 (x - 3) + 2. [2]

№ 4 (C) найти наибольший корень уравнения:  log2(2+5)+ log0,5(-х-0,5) = 1 [-4]

№ 5 (C) Решите уравнение - log6 x + 34 = ()2 + x. [2]

Уравнения №1-3 решает по два ученика на обратных крыльях доски с последующей проверкой решения всем классом.

Уравнение №4,5 решает ученик с подробным комментарием.

По окончании самооценка и взаимооценка учащихся (результаты заносятся в листы самоконтроля).

Простейшими логарифмическими уравнениями будем называть уравнения следующих видов:

log a x = b, a > 0, a img1.gif (64 bytes) 1.

log a f(x) = b, a > 0, a img1.gif (64 bytes) 1.

log f(x) b = c, b > 0.

Эти уравнения решаются на основании определения логарифма: если logb a = c, то a = b c.

Решить уравнение log2 x = 3.

Решение. Область определения уравнения x > 0. По определению логарифма x = 23, x = 8 принадлежит области определения уравнения.

Ответ: x = 8.

Уравнения вида loga f(x) = b, a > 0, a img1.gif (64 bytes) 1.

Уравнения данного вида решаются по определению логарифма с учётом области определения функции f(x).

Обычно область определения находится отдельно, и после решения уравнения f(x) = ab проверяется, принадлежат ли его корни области определения уравнения.

Пример. Решить уравнение log3(5х - 1) = 2.

Решение:

ОДЗ: 5х - 1 > 0; х > 1/5.

log3(5х- 1) = 2,

log3(5х - 1) = log332,

5х - 1 =9,

х = 2.

Ответ: 2.

Пример. Решить уравнение

Решение. Область определения уравнения находится из неравенства 2х2 - 2х - 1 > 0. Воспользуемся определением логарифма:

Применим правила действий со степенями, получим 2х2 - 2х - 1 = 3. Это уравнение имеет два корня х = -1; х = 2. Оба полученные значения неизвестной удовлетворяют неравенству 2х2 - 2х - 1 > 0, т.е. принадлежат области определения данного уравнения, и, значит, являются его корнями.

Ответ. х1 = -1, х2 = 2.

Уравнения вида logf(x) b = с, b > 0.

Уравнения этого вида решаются по определению логарифма с учётом области определения уравнения. Данное уравнение равносильно следующей системе

Чаще всего, область определения логарифмического уравнения находится отдельно, и после решения уравнения (f(x))c = b или равносильного уравнения проверяется, принадлежат ли его корни найденной области.

Пример. Решить уравнение

logx-19 = 2.

Решение. Данное уравнение равносильно системе

Ответ. x = 4.

2.. Потенцирование.

Суть метода заключается в переходе от уравнения

log a f(x) = log a g(x) к уравнению f(x) = g(x), которое обычно не равносильно исходному.

Уравнения вида

loga f(x) = loga g(x) , а > 0, а ?1.

На основании свойства монотонности логарифмической функции заключаем, что f(x) = g(x).

Переход от уравнения loga f(x) = loga g(x) к уравнению f(x) = g(x) называется потенцированием.

Нужно отметить, что при таком переходе может нарушиться равносильность уравнения. В данном уравнении f(x) > 0, g(x) > 0, а в полученном после потенцирования эти функции могут быть как положительными, так и отрицательными. Поэтому из найденных корней уравнения f(x) = g(x) нужно отобрать те, которые принадлежат области определения данного уравнения. Остальные корни будут посторонними.

Пример. Решить уравнение log3 (x2 - 3x - 5) = log3 (7 - 2x).

Решение. Область определения уравнения найдётся из системы неравенств:

x2 - 3x - 5>0,  7 - 2x>0

х> -1,5+ , х<3,5

х2 <-1,5-

Потенцируя данное уравнение, получаем х2 - 3х - 5 = 7 - 2х,

х2 - х - 12 = 0, откуда х1 = -3, х2 = 4. Число 4 не удовлетворяет системе неравенств.

Ответ. х = -3.

Cведение уравнений к виду log a f(x) = log a g(x) с помощью свойств логарифмов по одному основанию.

Если уравнение содержит логарифмы по одному основанию, то для приведения их к виду log a f(x) = log a g(x) используются следующие свойства логарифмов:

logb a + logb c = logb (a*c), где a > 0; c > 0; b > 0, b img1.gif (64 bytes) 1,

logb a - logb c = logb (a/c), где a > 0; c > 0; b > 0, b img1.gif (64 bytes) 1,

m logb a = logb a m, где a > 0; b > 0, b img1.gif (64 bytes) 1; m R.

Пример 1. Решить уравнение log6 (x - 1) = 2 - log6 (5x + 3).

Решение. Найдём область определения уравнения из системы неравенств

Применяя преобразования, приходим к уравнению

log6 (x - 1) + log6 (5x + 3) = 2,

log6 ((x - 1)(5x + 3)) = 2, далее, потенцированием, к уравнению

(х - 1)(5х + 3) = 36, имеющему два корня х = -2,6; х = 3. Учитывая область определения уравнения, х = 3.

Ответ. х = 3.

Пример 2. Решить уравнение

Решение. Найдём область определения уравнения, решив неравенство (3x - 1)(x + 3) > 0 методом интервалов.

Учитывая, что разность логарифмов равна логарифму частного, получим уравнение log5 (x + 3) 2 = 0. По определению логарифма (х + 3) 2 = 1, х = -4, х = -2. Число х = -2 посторонний корень.

Ответ. х = -4.

Пример 3. Решить уравнение log2 (6 - x) = 2 log6 x.

Решение. На области определения 0 < x < 6 исходное уравнение равносильно уравнению 6 - x = x2, откуда х = -3, х = 2. Число х = -3 посторонний корень.

Ответ. х = 2.

Уравнения вида Alog a f(x) + Blog b g(x) + C = 0.

Метод потенцирования применяется в том случае, если все логарифмы, входящие в уравнение, имеют одинаковое основание. Для приведения логарифмов к общему основанию используются формулы:

Пример 1. Решить уравнение

Решение. Область определения уравнения 1 < x < 2. Используя формулу (3), получим

Так как 3 = log28, то на области определения получим равносильное уравнение (2-x)/(x-1) = 8, откуда x = 10/9.

Ответ. x = 10/9.

Пример 2. Решить уравнение

Решение. Область определения уравнения x > 1. Приведём логарифмы к основанию 3, используя формулу (4).

Ответ. х = 6.

Пример 3. Решить уравнение

Решение. Область определения уравнения x > -1, x 0. Приведём логарифмы к основанию 3, используя формулу (2).

Умножим обе части уравнения на log 3(x + 1) ? 0 и перенесем все слагаемые в левую часть уравнения. Получим (log 3(x + 1)-1)2 = 0, откуда log 3(x + 1) = 1 и x = 2.

Ответ. x = 2.

3. Введение новой переменной

Рассмотрим два вида логарифмических уравнений, которые введением новой переменной приводятся к квадратным.

Уравнения вида

где a > 0, a img1.gif (64 bytes) 1, A, В, С - действительные числа.

Пусть t = loga f(x), t R. Уравнение примет вид t2 + Bt + C = 0.

Решив его, найдём х из подстановки t = loga f(x). Учитывая область определения, выберем только те значения x, которые удовлетворяют неравенству f(x) > 0.

Пример 1. Решить уравнение lg 2 x - lg x - 6 = 0.

Решение. Область определения уравнения - интервал (0; img2.gif (66 bytes)).Введём новую переменную t = lg x, t R.

Уравнение примет вид t 2 - t - 6 = 0. Его корни t1 = -2, t2 = 3.

Вернёмся к первоначальной переменной lg x = -2 или lg x = 3, х = 10 -2 или х = 10 3.

Оба значения x удовлетворяют области определения данного уравнения (х > 0).

Ответ. х = 0,01; х = 1000.

Пример 2. Решить уравнение

Решение. Найдём область определения уравнения

Применив формулу логарифма степени, получим уравнение

Так как х < 0, то | x | = -x и следовательно

Введём новую переменную t = log3 (-x), t принадлежит R. Квадратное уравнение t 2 - 4t + 4 = 0

имеет два равных корня t1,2 = 2. Вернёмся к первоначальной переменной log3 (-x) = 2, отсюда -х = 9, х = -9. Значение неизвестной принадлежит области определения уравнения.

Ответ. х = -9.

 Уравнения вида

где a > 0, a img1.gif (64 bytes) 1, A, В, С - действительные числа, A img1.gif (64 bytes) 0, В img1.gif (64 bytes) 0.

Уравнения данного вида приводятся к квадратным умножением обеих частей его на loga f(x) img1.gif (64 bytes) 0. Учитывая, что loga f(x) logf(x) a=1

(свойство logb a = 1/ loga b), получим уравнение

Замена loga f(x)=t, t R приводит его к квадратному At2 + Ct + B = 0.

Из уравнений loga f(x)= t1, logb f(x)= t2 найдем значения x и выберем среди них принадлежащие области определения уравнения:

f(x) > 0, f(x) img1.gif (64 bytes)1.

Пример. Решить уравнение

Решение. Область определения уравнения находим из условий x+2>0, x+2 img1.gif (64 bytes) 1, т.е. x >-2, x img1.gif (64 bytes) -1.

Умножим обе части уравнения на log5 (x+2) img1.gif (64 bytes) 0, получим

или, заменив log5 (x+2) = t, придем к квадратному уравнению

t 2 - t - 2 = 0, t1 = -1, t2 =2.

Возвращаемся к первоначальной переменной:

log5 (x+2) = -1, x+2 = 1/5, x = -9/5,

log5 (x+2) = 2, x+2 = 25, x = 23.

Оба корня принадлежат области определения уравнения.

Ответ: x = -9/5, x = 23.

в) log2х - 2 logх2 = -1

Решение:

ОДЗ: x > 0, х img1.gif (64 bytes) 1

Используя формулу перехода к новому основанию, получим

Обозначим

Ответ:

4. Приведение некоторых уравнений к логарифмическим логарифмированием обеих частей.

Переход от уравнения вида f(x) = g(x) к уравнению loga f(x) = loga g(x), который возможен если f(x) >0, g(x) >0, a >0, a img1.gif (64 bytes) 1, называется логарифмированием.

Методом логарифмирования можно решать:

Уравнения вида

Область определения уравнения - интервал (0, ). Прологарифмируем обе части уравнения по основанию a, затем применим формулы логарифма степени и произведения

Приведем подобные и получим линейное уравнение относительно loga x.

Пример. Решить уравнение 32log4 x+2=16x2.

Решение. Область определения x >0. Прологарифмируем обе части по основанию 4.

Используя свойства логарифмов, получим

Ответ: x = 1/4

Уравнения вида

Область определения уравнения - интервал (0, img2.gif (66 bytes)). Прологарифмируем обе части уравнения по основанию a, получим

Применим формулы логарифма степени и логарифма произведения

Введем новую переменную t=loga x , t R. Решив квадратное уравнение At2 + (B-а)t-loga C=0, найдем его корни t1 и t2. Значение x найдем из уравнений t1 = loga x и t2=loga x и выберем среди них принадлежащие области определения уравнения.

Пример 1. Решить уравнение

Решение. Область определения уравнения х > 0. Так как при х > 0 обе части уравнения положительны, а функция y = log3 t монотонна, то

(1 + log3 x) log3 x = 2.

Введём новую переменную t, где t = log3 x, t R.

(1 + t) t = 2, t 2 + t - 2 = 0, t1 = -2, t2 = 1.

log3 x = -2 или log3 x = 1,

x = 1/9 или х = 3.

Ответ. х = 1/9; х = 3.

Пример 2. Решить уравнение

Решение. Область определения уравнения х >1. Обе части уравнения положительны, прологарифмируем их по основанию 2, получим

Применим формулы логарифма степени и логарифма частного:

Введем новую переменную t=log2x, получим квадратное уравнение t2 - 3t + 2 = 0,

t1 = 2, t2 = 1, тогда log2 x = 2 или log2 x =1.

Ответ. x = 4, x = 2.

1) Найти наибольший корень уравнения: lq(x+6) - 2 = 1/2lq(2x -3) - lq25

2) log0,5(log4(1/х)) + log4(log2(16х2)) =0

3) Пусть (х0;y0) - решение системы уравнений

Найти x0 +y0

Решение:

x0 +y0 =1,8+1,1=2,9

Ответ: 2,9.

4) Пример .Решите систему уравнений

у-1оg3х = 1,

хy=312.

Решение. Решим эту систему методом перехода к новым переменным:

u = у, v = -1оg3х.

Заметим, что x>0 и у R является областью определения данной системы.

Логарифмируя обе части второго уравнения по основанию 3, получим:

у 1оg3 х = 12 или у(- 1оg3х) = -12.

u + v = 1,

Итак,

u v = -12.

Тогда по обратной теореме Виета переменные и и v являются корнями квадратного уравнения

z2 -z-12 = 0

Следовательно, решения данной системы найдем как множество решений совокупности двух систем а) и б):

а) б)

Решениями указанных систем являются соответственно пары (27;4), (; -3).

Ответ: (27; 4), (; -3).

5) Пример. Решите систему уравнений

ху = 24

1оg22 х + 1оg22 y = 10.

Решение.

Перейдем к новым переменным:

1оg 2 х = и,

x = 2u>0, 1оg2 у = v, у = 2v >0.

В новых переменных данная система имеет вид:

Следовательно, и и v являются корнями квадратного уравнения :

z 2-42 + 3 = 0

Отсюда следует, что достаточно решить систему

 

Другое решение найдем из-за симметричности х и у, т. е. если (х; y) - решение, то (у; х) также является решением.

Ответ: (2; 8), (8; 2).

5. Самостоятельная работа.

1 вариант

1. Вычислите значение выражения: 11-3log3

2. Решите уравнения:

а) lg(x+3)=2lg2-lgx

б) log 736-log7(3x-12)=log7 4

3.Решите систему уравнений :

 2 вариант

1. Вычислите значение выражения: 13-3log2

2. Решите уравнения:

а) 9 log 3x-x2log 3x=0

б) log5 (8-24x)-log 58=log 57.

3. Решите систему уравнений:

6.Подведение итогов урока:

Учитывая контингент учащихся данного класса, можно сделать вывод о том, что в целом учащиеся усвоили материал по данной теме.

Выставление оценок.

7. Домашнее задание:

Решите уравнения:

Приложение