Тема урока "Сравнение, сложение и вычитание дробей с разными знаменателями" (6-й класс)

Разделы: Математика

Класс: 6


Цели:

  • образовательные: повторить, обобщить и проверить знания и умения учащихся по данной теме;
  • развивающие: развивать активное математическое мышление учащихся; формировать и совершенствовать вычислительную культуру;
  • воспитательные: воспитывать умение анализировать, рассуждать, принимать решения, слушать собеседника, работать индивидуально и в коллективе.

Ход урока

1. Организационный момент

2. Сообщение темы урока

Учитель. Сегодня мы повторим сравнение, сложение и вычитание дробей с разными знаменателями. У нас будут соревноваться 3 команды, турнирная таблица начерчена на доске.

3. Повторение  основных правил действия с дробями

(Правильный полный ответ приносит команде 1 балл)

1. Основное свойство дроби.

    Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

2. Какие способы сокращения дробей вы знаете?

3. Как сравнить дроби с одинаковыми знаменателями?

    Из двух дробей с одинаковыми знаменателями больше та дробь, у которой числитель больше.

4. Как сравнить дроби с одинаковыми числителями?

    Из двух дробей с одинаковыми числителями больше та дробь, у которой знаменатель меньше.

5. Как сравнить дроби с разными знаменателями?

    Чтобы сравнить дроби с разными знаменателями надо:

  1. привести дроби к наименьшему общему знаменателю;
  2. сравнить полученные дроби.

6. Как сравнить обыкновенную и десятичную дроби?

    Представить обыкновенную дробь в виде десятичной дроби или десятичную в виде обыкновенной дроби.

7. Что значит записать дроби в порядке убывания (возрастания)?

8. Как сложить дроби с разными знаменателями?

    Чтобы сложить дроби с разными знаменателями надо:

  1. привести дроби к наименьшему общему знаменателю;
  2. сложить полученные дроби, используя правило сложения дробей с одинаковыми знаменателями;
  3. сократить, если возможно, полученную дробь или выделить целую часть.

9. Как выполнить вычитание дробей с разными знаменателями?

    Чтобы вычесть дроби с разными знаменателями, надо:

  1. найти наименьший общий знаменатель данных дробей;
  2. привести дроби к наименьшему общему знаменателю;
  3. из числителя уменьшаемого вычесть числитель вычитаемого и оставить тот же знаменатель
  4. сократить, если возможно, полученную дробь или выделить целую часть

4. Основная часть урока

На доске и на столах учащихся (в конвертах) подготовлен игровой материал.

1 игра: “Цветок”
Принимают участие команды.

На доске 3 цветка, на лепестках написаны равенства. От каждой команды поочерёдно к доске к своему цветку выходит ученик, отрывает лепесток и называет вместо буквы такое число, чтобы равенство было верным. Верный ответ – 1 балл (лепестки складываются в копилку команды).

2 игра: “Колонки” (индивидуальная работа с взаимопроверкой)

Учитель предлагает ученикам сложить числа, стоящие по вертикали и горизонтали. Учащиеся записывают ответ в клетки. Затем таблицы передаются соседу по парте и школьники проверяют результаты вычислений друг друга (можно выставить оценки). После проверки задания учитель собирает таблицы.

 
 
 
 
 

3 игра: “Кто быстрее”
Принимают участие команды.

На доске набор дробей, которые нужно расположить в порядке возрастания. Даётся 1минута на обдумывание. Из каждой команды вызывается к доске по одному ученику, которые выбирают наименьшее число из набора и магнитом прикрепляют его к доске. Затем его сменяет другой член команды, можно исправить неверный ответ. Выигрывает та команда, которая первая правильно выполняет задание. (Команды получают 3, 2 или 1 балл соответственно)

Обмен карточками. Теперь дроби нужно расположить в порядке убывания.

Учитель наблюдает и оценивает действия участников команд.

4 игра: “Знатоки Москвы”
Работа в парах.

Учащиеся, сидящие за одной партой, из конверта достают таблицу с ответами на уравнения, лежащими в конверте. Каждый ученик достаёт по одному цветному прямоугольнику из конверта и решает предложенное уравнение. Карточка закрывает один из ответов. В результате получается изображение уголка Москвы. (5,4,3,2 и 1 балл может заработать команда)

Предложенные учащимся варианты уравнений:

5 игра: “Конкурс капитанов” (задания выполняются во время игры “Знатоки Москвы”)

Задача 1. Через одну трубу бассейн наполняется за 15 часов, а через другую – за 18 часов. Через какую трубу нальется воды больше: через первую за 6 часов или через вторую за 7 часов?

Задача 2. Один трактор может распахать поле за 7 дней, а другой – за 5 дней. Какую часть поля уберут оба трактора за 1 день?

5. Подведение итогов, выставление оценок

6. Домашнее задание

Придумать свою игровую ситуацию по данной теме.