“Скажи мне – и я забуду,
Покажи мне – и я запомню,
Вовлеки меня – и я научусь”
Восточная пословица
Цель: Доказать теорему о сумме углов треугольника, упражнять в решении задач, используя данную теорему, развивать познавательную деятельность учащихся, используя дополнительный материал из разных источников, воспитывать умение слушать других.
Оборудование: Транспортир, линейка, модели треугольников, полоска настроения.
ХОД УРОКА
1. Организационный момент.
Отметьте на ленте настроения свое состояние на начало урока.
2. Повторение.
Повторить понятия, которые будут использованы при доказательстве теоремы: свойства углов при параллельных прямых, определение развернутого угла, градусная мера развернутого угла.
3. Новый материал.
3.1. Практическая работа.
У каждого ученика находятся три модели треугольника: остроугольный, прямоугольный и тупоугольный. Предлагается измерить углы треугольника и найти их сумму. Проанализировать результат. Могут получиться значения 177, 178, 179, 180, 181, 182, 183 градуса. Посчитайте среднее арифметическое (=180°) Предлагается вспомнить, когда углы имеют градусную меру 180 градусов. Ученики вспоминают, что это развернутый угол и сумма односторонних углов.
Давайте попробуем получить сумму углов треугольника используя оригами.
Историческая справка
Оригами (яп., букв.: “сложенная бумага”) — древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в древний Китай, где и была открыта бумага.
3.2. Доказательство теоремы из учебника Атанасяна Л.С.
Теорема о сумме углов треугольника.
Докажем одну из важнейших теорем геометрии – теорему о сумме углов треугольника.
Теорема. Сумма углов треугольника равна 180°.
Доказательство. Рассмотрим произвольный треугольник ABC и докажем, что A + B + C= 180°.
Проведем через вершину В прямую а, параллельную стороне АС . Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4 равен углу 1, угол 5 равен углу 3.
Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е. угол 4+угол 2+угол 5=180°. Отсюда, учитывая предыдущие равенства, получаем: угол 1 + угол 2+ угол 3= 180°, или A + B+ C=180°. Теорема доказана.
3.3. Доказательство теоремы из учебника Погорелова А. В.
Дано: ABC
Доказать: A + B + C = 180°
Доказательство:
1. Проведем через вершину B прямую BD // AC
2. DBC=ACB, как накрест лежащие при AC//BD и секущей BC.
3. ABD =ACB +CBD
Отсюда, A + B+C = ABD+BAC
4. ABD и BAC – односторонние при BD // AC и секущей AB, значит их сумма равна 180°, т.е. А+B + C=180°, что и требовалось доказать.
3. 4. Доказательство теоремы из учебника Киселева А.Н., Рыбкина Н.А.
Дано: АВС
Доказать: А+B +C=180°
Доказательство:
1. Продолжим сторону АС. Проведем СЕ//АВ
2. А=ЕСД, как соответственные при АВ//СЕ и АД - секущей
3. В=ВСЕ, как накрест лежащие при АВ//СЕ и ВС - секущей.
4. ЕСД+ВСЕ+С=180°, значит А + В + С = 180°, что и требовалось доказать.
3.5. Следствия 1. В любом треугольнике все углы острые, либо два угла острых, а третий тупой или прямой.
Следствие 2.
Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.
3.6. Теорема позволяет классифицировать треугольники не только по сторонам, но и по углам.
Вид треугольника | Равнобедренный | Равносторонний | Разносторонний |
прямоугольный | |||
тупоугольный | |||
остроугольный |
4. Закрепление.
4.1. Решение задач по готовым чертежам.
Найти неизвестные углы треугольника.
4.2. Проверка знаний.
1. В завершении нашего урока, ответьте на вопросы:
Существуют ли треугольники с углами:
а) 30, 60, 90 градусов,
b) 46, 4, 140 градусов,
с) 56, 46, 72 градуса?
2. Может ли в треугольнике быть:
а) два тупых угла,
b) тупой и прямой углы,
с) два прямых угла?
3. Определить вид треугольника, если один угол – 45 градусов, другой – 90 градусов.
4. В каком треугольнике сумма углов больше: в остроугольном, тупоугольном или прямоугольном?
5. Можно ли измерить углы любого треугольника?
Это вопрос-шутка, т.к. существует Бермудский треугольник, находящийся в Атлантическом океане между Бермудскими островами, государством Пуэрто-Рико и полуостровом Флорида, у которого невозможно измерить углы. (Приложение 1)
5. Итог урока.
Отметьте на ленте настроения свое состояние на конец урока.
Домашнее задание.
П. 30–31; № 223 а, б; № 227 а; рабочая тетрадь № 116, 118.