Урок геометрии в 7-м классе по теме "Сумма углов треугольника"

Разделы: Математика


“Скажи мне – и я забуду,
Покажи мне – и я запомню,
Вовлеки меня – и я научусь”
Восточная пословица

Цель: Доказать теорему о сумме углов треугольника, упражнять в решении задач, используя данную теорему, развивать познавательную деятельность учащихся, используя дополнительный материал из разных источников, воспитывать умение слушать других.

Оборудование: Транспортир, линейка, модели треугольников, полоска настроения.

ХОД УРОКА

1. Организационный момент.

Отметьте на ленте настроения свое состояние на начало урока.

 

2. Повторение.

Повторить понятия, которые будут использованы при доказательстве теоремы: свойства углов при параллельных прямых, определение развернутого угла, градусная мера развернутого угла.

3. Новый материал.

3.1. Практическая работа.

У каждого ученика находятся три модели треугольника: остроугольный, прямоугольный и тупоугольный. Предлагается измерить углы треугольника и найти их сумму. Проанализировать результат. Могут получиться значения 177, 178, 179, 180, 181, 182, 183 градуса. Посчитайте среднее арифметическое (=180°) Предлагается вспомнить, когда углы имеют градусную меру 180 градусов. Ученики вспоминают, что это развернутый угол и сумма односторонних углов.

Давайте попробуем получить сумму углов треугольника используя оригами.

Историческая справка

Оригами (яп., букв.: “сложенная бумага”) — древнее искусство складывания фигурок из бумаги. Искусство оригами своими корнями уходит в древний Китай, где и была открыта бумага.

Треугольники

3.2. Доказательство теоремы из учебника Атанасяна Л.С.

Теорема о сумме углов треугольника.

Докажем одну из важнейших теорем геометрии – теорему о сумме углов треугольника.

Теорема. Сумма углов треугольника равна 180°.

Доказательство. Рассмотрим произвольный треугольник ABC и докажем, что A + B + C= 180°.

Проведем через вершину В прямую а, параллельную стороне АС . Углы 1 и 4 являются накрест лежащими углами при пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 — накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому угол 4 равен углу 1, угол 5 равен углу 3.

Очевидно, сумма углов 4, 2 и 5 равна развернутому углу с вершиной В, т. е. угол 4+угол 2+угол 5=180°. Отсюда, учитывая предыдущие равенства, получаем: угол 1 + угол 2+ угол 3= 180°, или A + B+ C=180°. Теорема доказана.

3.3. Доказательство теоремы из учебника Погорелова А. В.

Дано: ABC

Доказать: A + B + C = 180°

Доказательство:

1. Проведем через вершину B прямую BD // AC

2. DBC=ACB, как накрест лежащие при AC//BD и секущей BC.

3. ABD =ACB +CBD

Отсюда, A + B+C = ABD+BAC

4. ABD и BAC – односторонние при BD // AC и секущей AB, значит их сумма равна 180°, т.е. А+B + C=180°, что и требовалось доказать.

3. 4. Доказательство теоремы из учебника Киселева А.Н., Рыбкина Н.А.

Дано: АВС

Доказать: А+B +C=180°

Доказательство:

1. Продолжим сторону АС. Проведем СЕ//АВ

2. А=ЕСД, как соответственные при АВ//СЕ и АД - секущей

3. В=ВСЕ, как накрест лежащие при АВ//СЕ и ВС - секущей.

4. ЕСД+ВСЕ+С=180°, значит А + В + С = 180°, что и требовалось доказать.

3.5. Следствия 1. В любом треугольнике все углы острые, либо два угла острых, а третий тупой или прямой.

Следствие 2.

Внешний угол треугольника равен сумме двух других углов треугольника, не смежных с ним.

3.6. Теорема позволяет классифицировать треугольники не только по сторонам, но и по углам.

Вид треугольника Равнобедренный Равносторонний Разносторонний
прямоугольный    
тупоугольный
остроугольный

4. Закрепление.

4.1. Решение задач по готовым чертежам.

Найти неизвестные углы треугольника.

4.2. Проверка знаний.

1. В завершении нашего урока, ответьте на вопросы:

Существуют ли треугольники с углами:

а) 30, 60, 90 градусов,

b) 46, 4, 140 градусов,

с) 56, 46, 72 градуса?

2. Может ли в треугольнике быть:

а) два тупых угла,

b) тупой и прямой углы,

с) два прямых угла?

3. Определить вид треугольника, если один угол – 45 градусов, другой – 90 градусов.

4. В каком треугольнике сумма углов больше: в остроугольном, тупоугольном или прямоугольном?

5. Можно ли измерить углы любого треугольника?

Это вопрос-шутка, т.к. существует Бермудский треугольник, находящийся в Атлантическом океане между Бермудскими островами, государством Пуэрто-Рико и полуостровом Флорида, у которого невозможно измерить углы. (Приложение 1)

5. Итог урока.

Отметьте на ленте настроения свое состояние на конец урока.

Домашнее задание.

П. 30–31; № 223 а, б; № 227 а; рабочая тетрадь № 116, 118.