Решение уравнений, содержащих неизвестную в основании логарифма

Разделы: Математика


Цели урока:

  • обучающие: закрепить основные способы решения логарифмических уравнений: по определению логарифма с учётом области определения, на основании свойств монотонности (потенцирование) с учётом равносильности перехода, переход к новому основанию, введение новой переменной; рассмотреть некоторые приемы быстрого решения уравнений рассматриваемого типа;
  • развивающие: содействовать развитию логического мышления учащихся; развивать умения рассуждать, сравнивать, осмысливать материал; развивать у учащихся умения анализа условия задачи перед выбором способа ее решения; развивать навыки исследовательской деятельности; учить видеть задачу целиком, логически мыслить при переходе от частного к общему; развивать навыки обобщения;
  • воспитывающие: воспитание познавательного интереса, элементов культуры общения; побуждение учащихся к преодолению трудностей в процессе умственной деятельности; воспитание у учащихся уверенности в себе, веры в свои силы в нестандартной ситуации.

Тип урока: урок комплексного применения знаний и навыков.

Ход урока:

1. Организационный момент

(сообщить учащимся тему урока, поставить перед ними задачи урока), (на партах у каждого раздаточный материал см. Приложение 1).

Изучив основные свойства логарифмической функции, правила вычисления логарифмов, овладев основными приемами решения логарифмических уравнений и неравенств, наша основная задача на сегодняшний урок – обобщить методы решения логарифмических уравнений, содержащих переменную в основании логарифма.

2. Активизация знаний учащихся.

Устная работа:

  1. Найдите область определения функций:

 

 

 

Ответ: (0;1) U (1;∞)

(- 4; - 3) U (- 3; - 1) U (1;∞)

(-∞; - 2) U (- 2; 2)

  1. Каким способом решается уравнение:

. Ответ: по определению логарифма. Решений нет!!

  1. При каком значении параметра а функция определена на множестве (1; ∞); если изменить основание, значение параметра изменится?

Ответ: а 1

 

Ответ: а 1

 

Ответ: а > 1

3. Основная часть урока.

Слайд 2. Виды уравнений и методы решения

слайд 3.

На области определения  по определению логарифма

Или

слайд 4.

Пример  Решение:   x=6. Ответ: 6.

слайд 5.

На области определения  по определению логарифма

слайд 6.

Пример:

Решение: 7x-14=3-2x; 9x=17; x=17/9; НО!!!  промежутки не пересекаются, значит, решений нет!! Ответ: решений нет.

слайд 7.

Пример:Каким способом решается уравнение?

предполагаемый ответ учащихся: решаем, применяя определение логарифма (решение учеником письменно на доске и в тетрадях)

Решение:    

при х= 6  верно. Ответ: 6

Слайд 8

Слайд 10. На найденной области определения  

решим уравнение: , , х = 0 или х = 1,5

 Ответ: 1,5

Слайд 11 Следующий вид уравнения:

Одна и та же функция в основании логарифма

Вопрос: Каким способом решать?

Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к следствию  

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 12. Одна и та же функция является подлогарифмическим выражением

Вопрос: Каким способом решать? Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к совокупности уравнений

 Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 13 .Пример

Решение:

 

Слайд 14. На промежутке  решаем совокупность уравнений:

  

Слайд 15. Проверяем на принадлежность этих чисел области определения, делаем вывод: решением уравнения являются числа: ; . Ответ: ;.

Слайд 16 Следующий вид уравнений:

Область определения достаточно объёмная

Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.

Слайд 17. Как вы думаете, каким способом лучше решать это уравнение?

Один из вариантов ответов: переход к новому основанию (числовому)

Слайд 18. или к буквенному  

Слайд 19. Пример:

(решение с подробным комментарием письменно на доске и в тетрадях).

Решение: Очевидно . Выполним преобразования основания и подлогарифмического выражения правой части уравнения

,

Перейдём в правой части уравнения к новому основанию х, применяя свойство: логарифм произведения равен сумме логарифмов множителей по такому же основанию

 ,

Выполним замену переменных

Получим уравнение , ,

Выполнив обратную замену, получим

 Х= - 1.

Очевидно – 1 не входит в область определения заданного уравнения.

Или , , .

По свойству: если коэффициенты квадратного уравнения таковы, что

a + c – b =0, то Х= - 1, Х= ½. Ответ: ½

Слайд 20   

Следующий тип уравнений

Слайд 21. Пример  

Решение:

  Ответ: 5,5.

Слайд 22 «Комбинированные» виды уравнений

Пример

Решение: очевидно   

  

Слайд 23  , ,  

(очевидно, последнее уравнение решений не имеет)

Слайд 24 , . Ответ:

Слайд 25 Уравнения, левая часть которых – сумма взаимно обратных слагаемых

Пример:  (*)

Очевидно, каждое слагаемое равно 1.

Получим систему, равносильную уравнению (*)

Слайд 26

  x = 2. Ответ: 2

Слайд 27. В чём отличие в решении следующего уравнения?

  (*)

Равенство взаимно обратных слагаемых верно при условии х > 0,5, х ≠ 1,5.

На рассматриваемом промежутке уравнение (*) равносильно совокупности

 

Слайд 28

Слайд 29

с учётом области определения:  Ответ: 1

Подведение итогов урока

4. Домашнее задание.

Слайд 30. Решите уравнения: ,

 

P. S. Урок проведён в 10 классе физико-химического профиля. Уложились за урок за счёт экономии времени: на партах лежали у каждого ученика листы с напечатанными типами уравнений, учащиеся записывали только метод решения (без области определения и решения). Эти листы ученики забрали с собой и вклеили в тетрадь.

В слабом классе лучше потратить на эту тему сдвоенный урок.

P. S. S. В кабинете один компьютер с выходом на экран телевизора. В связи с этим, на слайдах текст печатается очень крупно.

Список используемой литературы:

  1. Балаян Э. Н. ЕГЭ по математике: Новейшие тесты. Пособие для учащихся старших классов и абитуриентов вузов. — М: ИКЦ «МарТ»; Ростов-на-Дону: Издательский центр «МарТ», 2004.
  2. Балаян Э. Н. Математика. Серия «Единый госэкзамен». — Ростов н/Д: Феникс, 2004.
  3. Математика. Интенсивный курс подготовки к Единому государственному экзамену. — М.: Айрис-пресс, 2004.
  4. Математика: Варианты задач для вступительных испытаний в НГУЭУ. — Новосибирск: НГУЭУ, 2005.
  5. Математика: Учебное пособие для поступающих в вузы и старшеклассников / М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко. — М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.
  6. Уравнения и неравенства: Учеб. пособие / А. Г. Калашникова и др.— Новосибирск: Изд-во НГТУ, 2003.

Презентация.