Цели урока:
- обучающие: закрепить основные способы решения логарифмических уравнений: по определению логарифма с учётом области определения, на основании свойств монотонности (потенцирование) с учётом равносильности перехода, переход к новому основанию, введение новой переменной; рассмотреть некоторые приемы быстрого решения уравнений рассматриваемого типа;
- развивающие: содействовать развитию логического мышления учащихся; развивать умения рассуждать, сравнивать, осмысливать материал; развивать у учащихся умения анализа условия задачи перед выбором способа ее решения; развивать навыки исследовательской деятельности; учить видеть задачу целиком, логически мыслить при переходе от частного к общему; развивать навыки обобщения;
- воспитывающие: воспитание познавательного интереса, элементов культуры общения; побуждение учащихся к преодолению трудностей в процессе умственной деятельности; воспитание у учащихся уверенности в себе, веры в свои силы в нестандартной ситуации.
Тип урока: урок комплексного применения знаний и навыков.
Ход урока:
1. Организационный момент
(сообщить учащимся тему урока, поставить перед ними задачи урока), (на партах у каждого раздаточный материал см. Приложение 1).
Изучив основные свойства логарифмической функции, правила вычисления логарифмов, овладев основными приемами решения логарифмических уравнений и неравенств, наша основная задача на сегодняшний урок – обобщить методы решения логарифмических уравнений, содержащих переменную в основании логарифма.
2. Активизация знаний учащихся.
Устная работа:
- Найдите область определения функций:
Ответ: (0;1) U (1;∞)
(- 4; - 3) U (- 3; - 1) U (1;∞)
(-∞; - 2) U (- 2; 2)
- Каким способом решается уравнение:
. Ответ: по определению логарифма. Решений нет!!
- При каком значении параметра а функция определена на множестве (1; ∞); если изменить основание, значение параметра изменится?
Ответ: а ≥ 1
Ответ: а ≥ 1
Ответ: а > 1
3. Основная часть урока.
Слайд 2. Виды уравнений и методы решения
слайд 3.
На области определения по определению логарифма
Или
слайд 4.
Пример Решение: x=6. Ответ: 6.
слайд 5.
На области определения по определению логарифма
слайд 6.
Пример:
Решение: 7x-14=3-2x; 9x=17; x=17/9; НО!!! промежутки не пересекаются, значит, решений нет!! Ответ: решений нет.
слайд 7.
Пример:Каким способом решается уравнение?
предполагаемый ответ учащихся: решаем, применяя определение логарифма (решение учеником письменно на доске и в тетрадях)
Решение:
при х= 6 верно. Ответ: 6
Слайд 8
Слайд 10. На найденной области определения
решим уравнение: , , х = 0 или х = 1,5
Ответ: 1,5
Слайд 11 Следующий вид уравнения:
Одна и та же функция в основании логарифма
Вопрос: Каким способом решать?
Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к следствию
Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.
Слайд 12. Одна и та же функция является подлогарифмическим выражением
Вопрос: Каким способом решать? Один из вариантов ответов: область определения достаточно объёмная, поэтому переходим к совокупности уравнений
Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.
Слайд 13 .Пример
Решение:
Слайд 14. На промежутке решаем совокупность уравнений:
Слайд 15. Проверяем на принадлежность этих чисел области определения, делаем вывод: решением уравнения являются числа: ; . Ответ: ;.
Слайд 16 Следующий вид уравнений:
Область определения достаточно объёмная
Найдём корни этого уравнения и подстановкой в первоначальное логарифмическое, проверим.
Слайд 17. Как вы думаете, каким способом лучше решать это уравнение?
Один из вариантов ответов: переход к новому основанию (числовому)
Слайд 18. или к буквенному
Слайд 19. Пример:
(решение с подробным комментарием письменно на доске и в тетрадях).
Решение: Очевидно . Выполним преобразования основания и подлогарифмического выражения правой части уравнения
,
Перейдём в правой части уравнения к новому основанию х, применяя свойство: логарифм произведения равен сумме логарифмов множителей по такому же основанию
,
Выполним замену переменных
Получим уравнение , ,
Выполнив обратную замену, получим
Х= - 1.
Очевидно – 1 не входит в область определения заданного уравнения.
Или , , .
По свойству: если коэффициенты квадратного уравнения таковы, что
a + c – b =0, то Х= - 1, Х= ½. Ответ: ½
Слайд 20
Следующий тип уравнений
Слайд 21. Пример
Решение:
Ответ: 5,5.
Слайд 22 «Комбинированные» виды уравнений
Пример
Решение: очевидно
Слайд 23 , ,
(очевидно, последнее уравнение решений не имеет)
Слайд 24 , . Ответ:
Слайд 25 Уравнения, левая часть которых – сумма взаимно обратных слагаемых
Пример: (*)
Очевидно, каждое слагаемое равно 1.
Получим систему, равносильную уравнению (*)
Слайд 26
x = 2. Ответ: 2
Слайд 27. В чём отличие в решении следующего уравнения?
(*)
Равенство взаимно обратных слагаемых верно при условии х > 0,5, х ≠ 1,5.
На рассматриваемом промежутке уравнение (*) равносильно совокупности
Слайд 28
Слайд 29
с учётом области определения: Ответ: 1
Подведение итогов урока
4. Домашнее задание.
Слайд 30. Решите уравнения: ,
P. S. Урок проведён в 10 классе физико-химического профиля. Уложились за урок за счёт экономии времени: на партах лежали у каждого ученика листы с напечатанными типами уравнений, учащиеся записывали только метод решения (без области определения и решения). Эти листы ученики забрали с собой и вклеили в тетрадь.
В слабом классе лучше потратить на эту тему сдвоенный урок.
P. S. S. В кабинете один компьютер с выходом на экран телевизора. В связи с этим, на слайдах текст печатается очень крупно.
Список используемой литературы:
- Балаян Э. Н. ЕГЭ по математике: Новейшие тесты. Пособие для учащихся старших классов и абитуриентов вузов. — М: ИКЦ «МарТ»; Ростов-на-Дону: Издательский центр «МарТ», 2004.
- Балаян Э. Н. Математика. Серия «Единый госэкзамен». — Ростов н/Д: Феникс, 2004.
- Математика. Интенсивный курс подготовки к Единому государственному экзамену. — М.: Айрис-пресс, 2004.
- Математика: Варианты задач для вступительных испытаний в НГУЭУ. — Новосибирск: НГУЭУ, 2005.
- Математика: Учебное пособие для поступающих в вузы и старшеклассников / М. К. Потапов, С. Н. Олехник, Ю. В. Нестеренко. — М.: ООО «Издательство АСТ»: ООО «Издательство Астрель», 2004.
- Уравнения и неравенства: Учеб. пособие / А. Г. Калашникова и др.— Новосибирск: Изд-во НГТУ, 2003.