Тип урока: изучение нового материала.
Цель урока: формировать у учащихся умение упрощать буквенные выражения на основе распределительного свойства умножения, ввести понятия подобных членов, числового множителя; способствовать формированию детского коллектива, воспитывать самостоятельность, развивать у учащихся интерес к предмету, знакомить учащихся с историей развития математики.
Задачи урока
Образовательные: обеспечить в ходе урока умение применять распределительное свойство умножения для упрощения буквенных выражений, ввести понятие подобных членов, числового множителя – коэффициента; формировать умение применять распределительное свойство умножения при решении уравнений; продолжить формирование общих учебных умений и навыков: навыки планирования ответа, навыки самоконтроля.
Воспитательные: воспитывать у учащихся интерес к предмету, умение работать в парах, умение слушать товарища, отстаивать свою точку зрения, самостоятельность, навыки самоконтроля.
Развивающие: развивать восприятие, логическое и математическое мышление, умение связывать изученный материал с новым, анализировать, выделять главное; знакомить учащихся с историей развития математики.
Метод обучения: беседа, самостоятельная работа
Оборудование: иллюстрация, плакат с готовым решением 1 и 2 задания IV этапа, плакат с заданием 2 VI этапа, портрет Франсуа Виета, тесты.
Ход урока
I этап. Организация начала урока.
Цель этапа: подготовка к работе на уроке.
Содержание деятельности: приветствие, определение отсутствующих; проверка готовности учащихся к уроку; готовность наглядных пособий, доски, мела и т.д.
Раскрытие общей цели урока.
II этап. Актуализация знаний учащихся
Цель этапа: подготовить учащихся к изучению нового материала
Содержание деятельности
1) Вычислите:
а) 30 + 20 |
б) 60 + 30 |
в) 100 – 90 |
2) Вычислите, применяя законы арифметических действий:
а) 372 + 2444 + 1628;
б) 156 + 1037 + 2063 + 844;
в) 125 . 53 . 8;
г) 52 . 138 + 48 . 138;
д) 67 . 149 + 149 . 33;
е) 150 . 97 – 57 . 150.
3) Решите уравнение: а) х – 2041 = 3059; б) 289 + у = 301; в) z . 93 = 186; г) 100 : a = 25.
4) Сформулируйте распределительное свойство умножения относительно сложения и относительно вычитания.
III этап. Изучение нового материала
Цель этапа: объяснить понятие «упрощение выражения», ввести понятие подобных членов, числового множителя.
Содержание деятельности
1) Задача.
На столе стоят три вазы с гвоздиками. В первой вазе х гвоздик, во второй – в 2 раза больше, а в третьей – в 3 раза больше, чем в первой. Сколько гвоздик во второй и третьей вазах?
1 ваза – х;
2 ваза – 2 . х
3 ваза – 3 . х
Всего во второй и третьей вазах - 2 . х + 3 . х
Преобразуем выражение, применяя распределительное свойство умножения
2 . х + 3 . х = х . ( 2 + 3) = х . 5 = 5х
Итак, распределительное свойство умножения позволяет упрощать буквенные выражения
3а + 7а = а(3 + 7) = 10а
27у – 12у = у(27 – 12) = 15у
49х + х = х(49 + 1) = 50х
63b – b = b(63 – 1) = 62b
Таким образом, данные выражения мы записали в более простом виде, или, как говорят математики, упростили. Такие преобразования, в результате которых получаются более простые выражения называют упрощением выражений.
2) Рассмотрим выражение 3у. Это произведение числа 3 и буквы у. Говорят, что число 3 – числовой множитель, а буква у – буквенный множитель. Числовой множитель обычно в таких выражениях называют коэффициентом.
Упрощая выражения, мы складывали коэффициенты, а буквенный множитель мы оставляли без изменения. Обычно промежуточные записи не делают, а просто пишут 8у – 3у = 5у; 17х + х = 18х.
3) Мы рассмотрели буквенные выражения, у которых одинаковая буквенная часть. Такие выражения называют подобными.
А выражение 27х + 7у упростить нельзя, потому что у них буквенная часть разная.
4) Отметим, что распределительный закон умножения верен не только для двух, а для любого числа слагаемых.
Далее учащимся предлагается Рисунок,
на которой множитель за скобкой сравнивается с предупредительным официантом, который обслуживает всех клиентов в ограниченном скобками зале.
5) Примеры.
Упростить выражение:
а) 2(а + 6) + 3(а + 2) = 2а + 12 + 3а + 6 = 5а + 18
б) 3(а + 2b + 4) + 7(2a + 4b +1) = 3a + 6b + 12 + 14a + 28b + 7 = 17a + 34b + 19
IV этап. Первичная проверка понимания новых знаний и способов деятельности.
Цель этапа: установление обратной связи между учителем и учениками по вопросам содержания нового учебного материала.
Содержание деятельности
1. Упростите следующие выражения. Назовите в полученных выражениях числовой и буквенный множитель. Как называются эти слагаемые?
27х + 29х
12у + 78у
103а – 87а
12b – b
13z + 2z + z – 5z
2. Упростите выражения
2а + 1 + а + 11
7b – 5b + 13 + 2b + 10
13у – у + х + 2х
3. Какое свойство мы использовали при упрощении данных выражений? Почему нельзя упростить выражение 17у – 13а? 2у + 1?
V этап. Закрепление полученных знаний и способов деятельности.
Цель этапа: сформировать у учащихся на основе знаний умение упрощать выражения по «образцу»
Содержание деятельности
1. Упростить выражение:
а) 23а + 37а; д) 27р – 27р; и) 3а + 17 + 3а + 14;
б) 4у + 26у; е) 84b – 80b; к) к + 35 + 4к + 26.
в) 48х + х; ж) 32q – q;
г) у + 56у; з) 1000к – к;
Учащимся дается время для самостоятельного решения для самостоятельного решения этого задания, а затем по готовым ответам проверяют свое решение.
VI этап. Применение знаний и способов деятельности.
Цель этапа: освоение способов деятельности в изменённых условиях
Содержание деятельности
1. Решите уравнение:
а) 4х + 4х = 424;
б) 10к – к = 702;
в) 3х + 7х + 18 = 178;
г) 6у – 2у + 25 = 65.
2. Далее учащимся предлагается самостоятельно решить уравнения и расшифровать слово:
- 15у – 8у = 714;
- 9z + z = 900;
- 4к + 5к + к = 1260;
- 7z + 6z – 13 = 130.
9 |
102 |
100 |
90 |
140 |
12 |
126 |
11 |
с |
в |
а |
и |
у |
г |
е |
т |
Учащимся показывают портрет Ф. Виета.
Франсуа Виет – французский математик. Одним из первых стал числа обозначать буквами.
3. Составьте выражение по условию задачи и упростите получившееся выражение:
1) На книжной полке стояли книги. Из них а книг – сказки, а приключенческих повестей в 5 раз больше. Сколько всего книг на книжной полке?
2) В ящике было у кг яблок, а в мешке в 4 раза больше. На сколько яблок в ящике меньше, чем в мешке?
3) Ниф – Ниф, Нуф – Нуф и Наф - Наф собирали желуди. Ниф – Ниф собрал х желудей, Нуф – Нуф в 3 раза больше,а Наф - Наф в 5 раз больше, чем Ниф – Ниф. Сколько всего желудей собрали три поросенка?
4. Чему равны стороны треугольника АВС, если сторона АС в 3 раза больше стороны АВ, а сторона ВС на 4 см меньше АС, а его периметр равен 24 см?
VII этап. Контроль и самоконтроль знаний и способов деятельности.
Цель этапа: получение информации для сравнения достигнутых результатов учебного занятия с первоначально запланированными задачами.
Содержание деятельности: учащимся предлагается тест на 5минут
1. Упростите выражение: 34х – х + 5х
а) 39х; б) 38х; в) 37х
2. В одном мешке было х кг картофеля, а во втором в 2 раза больше. Сколько
килограммов картофеля было в двух мешках?
а) х; б) 2х; в) 3х; г) 4х.
3. Вася решил у задач, а Миша – на 4 задачи больше. Сколько задач решили Миша и
Вася всего?
а) 4у; б) 6у; в) 2у + 4; г) у + 4.
4. Упростите выражение:
4b + 15 + 3b -10 + b
a) 8b + 5; б) 7b + 5; в) 13b; г) 13
5. Даны два выражения:
9(856 + 342) и 9 .856 + 8 . 856. Какое из выражений больше?
а) равны; б) первое; в) второе.
Далее учащимся предлагается обменяться тетрадями и проверить тесты по готовым ответам на доске. Учащиеся выставляют друг другу оценки.
Ответы.
№ задания |
1 |
2 |
3 |
4 |
5 |
Ответ |
б |
в |
в |
а |
б |
VII этап. Подведение итогов урока.
VIII этап. Домашнее задание: учащимся раздаются карточки с домашним заданием