Урок "Цилиндр, конус, шар"

Разделы: Математика


Цели урока:

Образовательные: ввести понятия цилиндра, конуса и шара, познакомить учащихся с формулами нахождения площадей тел вращения, сформировать умения применять формулы (полученные знания) при решении задач на цилиндр, конус и шар;

Воспитательные: воспитание внимательности у учащихся.

Развивающие: развитие пространственного воображения, логического мышления, культуры устной математической речи.

План урока:

  1. Организационный момент;
  2. Объяснение нового материала;
  3. Закрепление нового материала;
  4. Постановка домашнего задания и подведение итогов урока.

Оборудование: Компьютер, проектор, экран.

Ход урока

I. Организационный момент.

II. Объяснение нового материала.

- Сегодня на уроке мы познакомимся с новыми для вас понятиями: понятием цилиндра, конуса и сферы, площадями боковых поверхностей данных тел и рассмотрим сечения цилиндра и конуса различными плоскостями, а также взаимное расположение сферы и плоскости.

1. Начнем мы с понятия цилиндра.

Рассмотрим две параллельные плоскости и и окружность L с центром в точке O радиуса r, расположенную в плоскости (слайд 2). Через каждую точку окружности L проведем прямую, перпендикулярную к плоскости .

Отрезки этих прямых, заключенные между плоскостям и , образуют цилиндрическую поверхность. Сами отрезки называются образующими цилиндрической поверхности.

Тело, ограниченное цилиндрической поверхностью и двумя кругами с границами L и L1, называется цилиндром (слайд 2).

Цилиндрическая поверхность называется боковой поверхностью цилиндра, а круги – основаниями цилиндра.

Образующие цилиндрической поверхности называются образующими цилиндра, прямая OO1осью цилиндра.

Все образующие цилиндра параллельны и равны друг другу. Почему? (как отрезки параллельных прямых, заключенные между параллельными плоскостями).

Длина образующей называется высотой цилиндра, а радиус основания – радиусом цилиндра.

Ребята, давайте изобразим в своих тетрадях цилиндр и запишем его определение.

Цилиндр может быть получен вращением прямоугольника вокруг одной из его сторон (слайд 2).

Слайд 3. Ребята, посмотрите, пожалуйста, на рисунок. Слева у нас изображен цилиндр, а справа- развертка боковой поверхности цилиндра. Оказывается, что за площадь боковой поверхности цилиндра принимается площадь ее развертки, т.е. площадь боковой поверхности цилиндра радиуса r и высоты h равна произведению длины окружности на высоту цилиндра. Запишем это себе в тетрадь: . Как вы думаете, чему равна площадь полной поверхности цилиндра? ().

2. Понятие конуса.

Рассмотрим окружность L с центром O и прямую OP, перпендикулярную к плоскости этой окружности (слайд 4).Изображаем у себя в тетрадях. Каждую точку окружности соединим отрезком с точкой P. Делаем все вместе со мной. Поверхность, образованная этими отрезками, называется конической поверхностью, а сами отрезки – образующими конической поверхности.

Тело, ограниченное конической поверхностью и кругом с границей L, называется конусом (слайд 4). Записываем себе определение конуса под диктовку.

Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса. Точка P называется вершиной конуса, а образующие конической поверхности – образующими конуса. Отрезок OP конуса называется высотой конуса.

Конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов (слайд 4).

Теперь давайте найдем площадь полной поверхности конуса. Какие будут предложения? (площадь полной поверхности конуса равна сумме площадей боковой поверхности и основания) Чему равна площадь основания конуса? () А площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую, т.е. (пояснить). Тогда получаем, что .

Об усеченном конусе вы прочтете дома (стр.125) и сделаете конспект данного пункта.

3. Понятие сфера и шар.

- Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки (слайд 6).

Данная точка называется центром сферы, а данное расстояние – радиусом сферы. Отрезок, соединяющий две точки сферы и проходящей через ее центр, называется диаметром сферы.

Сфера может быть получена вращением полуокружности вокруг ее диаметра (слайд 6).

Тело, ограниченное сферой, называется шаром. Центр, радиус и диаметр сферы называются также центром, радиусом и сферой шара.

А теперь, ребята, давайте выведем уравнение сферы радиуса R с центром в точке C(x0, y0, z0). Изображаем в тетрадях рисунок такой же как у меня (слайд 7).

Расстояние от произвольной точки M (x, y, z) до точки C вычисляется по формуле . Если точка M лежит на данной сфере, то или , т.е. координаты точки M удовлетворяют уравнению .

Если же точка M (x, y, z) не лежит на данной сфере, то , т.е. координаты точки M не удовлетворяют уравнению. Следовательно, в прямоугольной системе координат уравнение сферы радиуса R с центром в точке C(x0, y0, z0) имеет вид . Запишем это себе в тетрадь. У кого есть вопросы?

- Рассмотрим сечения цилиндра различными плоскостями. Если секущая плоскость проходит через ось цилиндра, то сечение представляет собой прямоугольник, две стороны которого – образующие, а две другие – диаметры оснований цилиндра (слайд 8). Такое сечение называется осевым.

Если секущая плоскость перпендикулярна к оси цилиндра, то сечение является кругом (слайд 8). Изображаем у себя в тетрадях.

- Рассмотрим сечения конуса различными плоскостями. Если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник (почему?), основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Такое сечение называется осевым.

Если секущая плоскость перпендикулярна к оси конуса, то сечение представляет собой круг, расположенным на оси конуса. Изображаем у себя в тетрадях сечения конуса. Давайте сверим рисунки, посмотрите на экран (слайд 8).

- О взаимном расположении сферы и плоскости вы узнаете самостоятельно, сейчас поговорим о касательной плоскости к сфере.

Записываем определение: плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы (слайд 10).

- Касательная плоскость к сфере обладает следующим свойством:

Теорема. Радиус сферы, проведенный в точку касания сферы и плоскости, перпендикулярен к касательной плоскости.

Доказательство.

Вернемся к нашему рисунку. Докажем, что радиус перпендикулярен к плоскости .

Предположим, что это не так. Тогда радиус является наклонной к плоскости , и, следовательно, расстояние от центра сферы до плоскости меньше радиуса сферы. Поэтому сфера и плоскость пересекаются по окружности. Но это противоречит тому, что плоскость – касательная, т.е. сфера и плоскость имеют только одну общую точку. Полученное противоречие доказывает, что радиус перпендикулярен к плоскости . Теорема доказана.

Верна и обратная теорема. Давайте сформулируем ее вместе (если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере)

Формула для вычисления площади сферы: .

III. Закрепление нового материала.

Решим задачу 539 (слайд 11, слайд 14).

Задача 539. Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?

Вопросы учителя Ответы учащихся
Что нужно найти? Сколько понадобится краски, чтобы покрасить бак цилиндрической формы с диаметром основания 1,5 м и высотой 3 м, если на один квадратный метр расходуется 200 г краски?
Как будем находить? Давайте сначала найдем площадь поверхности цилиндра.
Сразу условимся, что бак будет с крышкой. Тогда будем находить площадь полной поверхности цилиндра или боковой поверхности цилиндра? Площадь полной поверхности цилиндра.
А что потом? Полученную площадь умножим на 200 г.
Запишем ответ  

Сейчас проверим, как вы усвоили материал. (В зависимости от условий проведения урока тест может быть представлен учащимся в электронном варианте или в печатном.)

Решите тест (печатный вариант). Я вам сейчас выдам таблицу, в первой строке таблицы записаны номера заданий, во второй строке вы пишете номера правильных ответов.

1 2 3 4 5
         

Задания для теста.

IV. Постановка домашнего задания и подведение итогов урока.

Домашнее задание: учебник глава VI (выучить основные определения, теоремы), задача 541

Итоги: на данном занятии мы познакомились с такими понятиями как цилиндр, конус, шар и сферы (показать слайды 2, 4 и 6).