Цель: Применение теоремы Виета и ей обратной теоремы при нахождении коэффициентов в квадратных уравнениях, при решении заданий из вариантов ЕГЭ.
Воспитательные задачи: Способствовать формированию умений, применять приемы сравнений, обобщения, выделения главного, переноса знаний в новую ситуацию, развитию творческих способностей. Побуждать учащихся к самоконтролю и взаимоконтролю, самоанализу своей учебной деятельности.
Оборудование: плакаты, компьютер, экран, видеопроектор.
Ход урока
I. Вводная беседа. Устные упражнения (5 мин.)
Сегодня на уроке мы с вами вместе подведем итог, как важно применение теоремы Виета. В каких упражнениях применяется теорема и как важно ее знать и применять. (Учитель показывает презентацию, в которой сформулированы цели, задачи, структура урока). <Приложение 1>
Учащиеся формулируют теорему Виета и ей обратную теорему. У доски два ученика записывают формулы теоремы Виета для приведенного и полного квадратных уравнений:
– формулы для полного квадратного уравнения;
– формулы для приведенного квадратного уравнения;
Трое учащихся решают на дополнительных досках индивидуальные задания.
Решите уравнения и выполните проверку по теореме, обратной теореме Виета:
II. Устные упражнения (5 мин.)
Затем с учащимися решаем устные упражнения:
Найдите корни уравнения:
3. Если в квадратном уравнении сумма коэффициентов a + b + c = 0,
То Используя это свойство, решите уравнения:
4. Теорема Виета применяется при нахождении суммы и произведения корней. Покажите, как это выглядит. Перед вами уравнения:
У какого из данных уравнений:
- Сумма корней равна 6, а произведение – 16?
- Корни равны?
- Один из корней уравнения равен 6?
- Каждый из корней на 2 больше, чем корни уравнения ? Ответ обосновать.
III. Лабораторная работа (3 мин.)
Учащимся предлагается выполнить лабораторную работу.
Составьте квадратные уравнения, которые:
- не имеют корней;
- имеет один из корней, равный 0;
- имеет два корня, равных по модулю, но противоположных по знаку;
- имело бы один корень;
- сумма коэффициентов уравнения равна 0.
Учащиеся выполняют это задание по группам (4–5 учащихся в группе).
Пример лабораторной работы:
IV. Работа с таблицей (3 мин.)
Выполнив лабораторную работу, три группы озвучивают свою лабораторную работу, а остальные группы сдают лабораторные работы на плакатах на проверку (2 мин.).
Один из учащихся (Евсеев А.) заранее готовит презентацию об исследовании знаков в приведенных квадратных уравнениях. <Приложение 2>
Все учащиеся работают с таблицей и отвечают на вопросы о знаках в квадратных уравнениях:
- Когда корни квадратного уравнения имеют одинаковые знаки?
- Когда оба корня положительные, отрицательные?
- Когда корни имеют разные знаки?
- Когда больший по модулю корень отрицателен?
- Когда больший по модулю корень положителен?
Сформулируйте выводы о знаках корней квадратных уравнений.
V. Тренировочные упражнения. Работа у доски (23 мин.)
Следующий этап урока: двое учащихся решают у доски задания о нахождении неизвестных коэффициентов в квадратных уравнениях.
1. В уравнении один из корней равен 7. Найдите другой корень и коэффициент р. Ответ:
2. Один из корней уравнения равен 12,5. Найдите другой корень уравнения и коэффициент с. Ответ:
Такого вида уравнения часто встречаются на экзаменах. Поэтому сейчас Слинько В. предлагает просмотреть презентацию о нахождении коэффициентов в квадратных уравнениях. <Приложение 3>
А после просмотра презентации учащимся предлагается решить 2 уравнения самостоятельно с последующей проверкой.
1. Разность корней квадратного уравнения равна 2. Найдите с.
Ответ: c = 35.
2. Разность корней квадратного уравнения равна 6. Найдите с.
Ответ: c = –8,75.
Использование теоремы Виета дает возможность решать более сложные задания.
Трое учащихся решают задания у доски, комментируя и объясняя ход решения:
1. Один из корней уравнения равен 8. Найдите другой корень и коэффициент в.
Ответ: .
2. Один из корней уравнения равен 5,3. Найдите другой корень и коэффициент с.
Ответ: .
3. В уравнении квадратов корней равна . Найдите с. Ответ: с = 9.
VI. Заключение (6 мин.)
В заключение урока подводим итоги. Учащиеся формулируют применение теоремы Виета.
Теорема Виета применяется:
- при нахождении суммы и произведения корней квадратных уравнений;
- при составлении квадратных уравнений;
- при решении уравнений методом подбора;
- при нахождении коэффициентов в уравнении, свободного члена;
- при сравнении знаков коэффициентов в квадратном уравнении.
Один из учащихся рассказывает стихотворение.
По праву достойна в стихах быть воспета
О свойстве корней теорема Виета.
Что проще скажи постоянства такого?
Умножишь ты корни и дробь уж готова!
В числителе с, в знаменателе а,
А сумма корней тоже дроби равна.
Хоть с минусом дробь эта – что за беда?!
В числителе в, в знаменателе а.
Домашнее задание: № 645, № 667, № 671 из учебника «Алгебра 8», автор Макарычев Ю. Н.
Учитель выставляет оценки за урок, благодарит учащихся за работу на уроке.
Также предлагается посмотреть презентацию о решении квадратных уравнений с параметром, в которой рассматриваются задания повышенной сложности, применяемые на экзаменах и малом ЕГЭ. <Приложение 4>