Изящные способы решения систем уравнений с двумя переменными второй степени

Разделы: Математика


Цели урока:

  • рассмотреть интересные способы решения систем уравнений с двумя переменными второй степени;
  • продолжить работу по формированию у учащихся умений решать системы уравнений с двумя переменными различными способами;
  • развивать логическое мышление, способность к абстрагированию, анализу.

Ход урока

Решение систем, содержащих два уравнения с двумя переменными второй степени весьма трудная задача, но в некоторых случаях системы могут быть решены с помощью простых и изящных приемов. Открыть некоторые из них – это цель сегодняшнего урока.

I. Проверка домашнего задания.

Решить систему уравнений способом подстановки и графически.

Первый ученик показывает решение системы уравнений:

(1) - способом подстановки.

Решение:

1) ху=-3;
2)

умножим обе части уравнения на ,получим:пусть и 0,тогда по теореме, обратной теореме Виета, получим:

Если z =9,то ,

z =1, то

-3,-1,1,3 отличны от нуля, значит, они являются корнями уравнения

3) Если то то
то то

Ответ:(3;-1), (-3;1), (-1;3), (1;-3)-решения системы (1).

Второй ученик показывает решение системы уравнений:

- графическим способом.

Решение:

В одной системе координат построим графики уравнений: и ху= -3.

-графиком этого уравнения является окружность с центром в точке (0;0) и радиусом .

В треугольнике АВС,АВС =90°, АВ=1, ВС=3, АС=.

Длину отрезка АС= возьмем за радиус окружности .

ху=3; у=; - графиком этого уравнения является гипербола, ветви которой расположены во II и IV координатных углах.

х -6 -3 -1 -0.5 0.5 1 3 6
у 0.5 1 3 6 -6 -3 -1 -0.5

 

Рисунок 1

Графики изображены на рисунке 1.

Графики и пересекаются в четырех точках (они обозначены буквами А, В, С, Д), следовательно, данная система уравнений имеет четыре решения:

(3;-1), (-3;1), (-1;3), (1;-3).

Ответ: (3;-1), (-3;1), (-1;3), (1;-3).

Интересно заметить, что решения данной системы симметричны. Точки С и В и А и Д симметричны относительно начала координат. Точки С и А и Д и В симметричны относительно биссектрисы I и III координатных углов (прямой у=х), поэтому их координаты “меняются местами”.

II. “Открытие” новых способов решения этой же системы.

Для решения этой системы есть более изящные и красивые способы. Открыть их, понять и научиться применять - это цель нашего урока. Поставив цель мы в конце урока должны подвести итог нашей работе, для этого мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп - шесть способов мышления”- они нам и помогут с разных позиций проанализировать урок, работая в группах.

Работа в группах.

Решить систему новым способом (на работу 5-7мин.).

Свое решение на доске показывает одна из групп:

(1)

Система (1) “распадается” на две более простые системы:

(2) (3)

Каждое решение системы (1) является решением хотя бы одной из систем (2) или (3).И каждое решение системы (2) и (3) является решением системы (1).

Системы (2) и (3) является симметричными, решим каждую из них:

(1) (2)
Пусть и корни уравнения Пусть и корни уравнения

и его корни,

Тогда (3;-1) и (-1;3)-

решения системы (1).

и его корни,

Тогда (-3;1) и (1;-3)-

решения системы (2)

Для того чтобы понять содержательную сторону приведенного решения, обратимся к графической иллюстрации. На рис.2 в одной системе координат показано графическое решение систем.

 

Рисунок 2

и

Каждая прямая х+у =2 и х+у =-2 пересекает гиперболу ху=-3 в двух точках, а всего мы имеем четыре точки пересечения (они обозначены буквами А, В, С, Д). Это те же точки, которые получились при пересечение гиперболы и окружности (смотри рис.1).

Ответ: (3;-1), (-3;1), (-1;3), (1;-3).

Еще один способ решения данной системы представил один из учеников, для которого это было домашнее индивидуальное задание.

Решение:

Сложим почленно первое уравнение системы сначала с уравнением 2ху=-6,а затем с уравнением -2ху=6.Получим систему:

Из первого уравнения получаем, что

х+у=2 или х+у =-2.

Из второго уравнения получаем, что

х-у=4 или х-у=-4.

Рассматривая каждое уравнение первой строки совместно с каждым уравнение второй строки приходим к четырем системам линейных уравнений:

Решив каждую из них получим следующие решения исходной системы:

(3;-1), (-3;1), (-1;3), (1;-3).

Решение проиллюстрировано графически на рис.3.

Рисунок 3

Теперь мы видим, что четыре прямые при попарном пересечении указывают нам те же самые точки, которые получились при пересечении окружности и гиперболы (смотри рис.1).

Ответ: (3;-1), (-3;1), (-1;3), (1;-3).

И еще разберем один из способов решения системы

Данная система является симметричной и решается она очень красиво с помощью введения новых переменных. Пусть , и учитывая, что ,получим:

Если u=-3, то или тогда получим:

и

Полученные системы тоже являются симметричными системами, которые мы уже решали. Итак,(3;1), (-1;3), (-3;1),(1;-3)-решения данной системы.

Мы рассмотрели пять различных способов решения одной и той же системы уравнений. Каждый выберет для себя способ, который ему больше всего понравился, самое главное - что каждый из Вас научился решать системы такого вида и поэтому эпиграфом урока могли служить слова Б.В.Гнеденко: “Ничто так не содействует усвоению предмета, как действие с ним в разных ситуациях”.

III. Самостоятельная работа (15-18 мин).

I вариант:

1 задание. Решить систему уравнений:

2 задание. На рисунке 4 построены: окружность парабола и прямая у=2х+10.Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.

Рисунок 4

3 задание. Система уравнений. где b-произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы два решения. Проиллюстрируйте решение системы, графически на рисунке 5.

Рисунок 5

II вариант:

1 задание. Решить систему уравнений:

2 задание. На рисунке 6 построены кубическая парабола у=х, гипербола у= и прямая у=2х.

Составьте всевозможные системы двух уравнений с двумя переменными и укажите их решения.

Рисунок 6

3 задание. Система уравнений где b- произвольное число, может иметь одно, два, три или четыре решения, а также может не иметь решений. Запишите конкретную систему, которая имела бы одно решение. Проиллюстрируйте решение графически на рисунке 5.

IV. Подведение итогов урока.

Для анализа урока мы будем использовать идею Эдварда де Боно, которую он назвал “Шесть шляп”.

Зелёная шляпа-символ свежей листвы, изобилия и плодородия. Она символизирует творческое начало и расцвет новых идей.

Итак, первая группа ответит на вопросы: пригодятся ли нам знания, полученные на уроке, умения исследовать и находить различные способы решения систем уравнений?

Жёлтая шляпа - солнечный, жизнеутверждающий цвет. Она полна оптимизма, под ней живёт надежда и позитивное мышление.

Итак, вторая группа отметит какие положительные моменты были на уроке и обоснует свой оптимизм.

Белая шляпа - белый цвет беспристрастен и объективен. В ней “варятся” мысли, “замешанные” на цифрах и фактах.

Итак, третья группа должна изложить происходящее на уроке опираясь и подкрепляя свой ответ цифрами и фактами.

Красная шляпа-символ восприятия действительности на уровне чувств. В ней можно отдать себя во власть эмоций.

Итак, четвёртая группа постарается высказать свои эмоции по поводу данного урока.

Чёрная шляпа - черный цвет мрачный, зловещий, словом - недобрый. Это критика, доходящая до въедливости.

Итак, пятая группа должна высказать свое мнение о том, что получилось на уроке или что требует доработки.

Синяя шляпа - синий цвет холодный, это цвет неба. Синяя шляпа связана с организацией, обобщением того, что достигнуто.

Итак, шестая группа при подведении итогов урока должна указать, на что необходимо обратить внимание при изучении данной темы?

V. Домашнее задание.

Домашнее задание:

А.П. Ершова, В.В. Голобородько “Самостоятельные и контрольные работы по алгебре и геометрии для 9 класса” (разноуровневые дидактические материалы). С-9,стр. 19 (по уровням сложности)