Конспект урока по теме "Решение задач на сложные проценты"

Разделы: Математика


Цель урока: сосредоточить внимание учащихся на решении разнообразных задач, в условии которых   встречается понятие сложные проценты.

Задачи урока:

  • Ознакомить школьников с основными положениями, формулами, теоретическими обоснованиями и методическими комментариями  к решению задач на сложные проценты.
  • Сформировать умения решения задач на сложные проценты.
  • Показать различные способы решения этих задач.
  • Научить анализировать условие задачи в плане выбора оптимального способа решения.
  • Проверить степень приобретенных навыков через обучающую самостоятельную работу.

ХОД УРОКА

I. Организационный момент

II. Актуализация знаний учащихся

А) Объясните на примерах смысл каждой из фраз:
- цена на товар снижена на 20%;
- производительность труда повысилась на 8%.
Б) Найти число, если 2% его равны: 12; 44; 2,8; 0,4.
В) Рабочий получил путевку в санаторий со скидкой 70% и уплатил за нее 2400р. Сколько стоит путевка в санаторий без скидки?

III. Объяснение нового материала

Учитель: Говорят, что имеем дело со «сложными процентами» в том случае, когда некоторая величина подвержена поэтапному изменению. При этом каждый раз ее изменение составляет определенное число процентов от значения, которое эта величина имела на предыдущем этапе. Рассмотрим 2 случая.
Случай 1. В конце каждого этапа величина изменяется на одно и то же постоянное количество процентов – р%. Тогда в конце п-го этапа значение некоторой величины А, исходное значение которой равнялось А0, определяется формулой:

Задача 1. Сберкасса выплачивает 3 % годовых. Через сколько лет внесенная сумма удвоится?

Решение.

Пусть первоначальная величина вклада составляет А0 рублей. Тогда через п лет эта величина равняется 2А0 рублей.

Ответ: через 23 года вклад удвоится.

Случай 2. Прирост величины А на каждом этапе  различный.
Пусть величина А в конце 1-го этапа испытывает изменение на р1%, а в конце 2-го этапа – на р2% и т.д. Если рк > 0, то величина А возрастает; если рк < 0, то величина А убывает. Тогда в конце п-го этапа значение величины А, первоначальное значение которой равнялось А0, будет определяться формулой:

Случай 3. Иногда в задачах встречается понятие «средний процент прироста». Под этим понимают такой постоянный процент прироста, который за п этапов давал бы такое же изменение величины А, которое она получает в действительности, при неравных поэтапных процентах изменения.
Средний процент прироста q% определяется формулой:

Задача 2. Число 51,2 трижды увеличивали на одно и то же число процентов, а затем трижды уменьшали на тоже же самое число процентов. В результате получилось число 21,6. На сколько процентов увеличивали, а затем уменьшали это число?

Решение.

Пусть на х% увеличивалось, а затем уменьшалось это число в каждом случае. Тогда в конце третьего увеличения значение нового числа определится по формуле сложных процентов:

Затем происходит уменьшение на х% тоже троекратно, т.е.
Следовательно, после трехкратного уменьшения мы получим число, равное а по условию оно равно 21,6.

Получим уравнение:

Ответ: на 50 % сначала увеличивали данное число, а затем уменьшали.

Задача 3. Акционерное общество «МММ-лимитед» объявило котировку своих акций на ближайшие 3 месяца с приростом в процентах последовательно по месяцам на 243 %, 412 % и 629 % по отношению к каждому предыдущему месяцу. Каков ожидаемый средний ежемесячный рост котировок акций за указанный период?

Решение.

Пусть А0 – первоначальный вклад.
После 1-го месяца
После 2-го месяца
После 3-го месяца
При среднем ежемесячном росте – х%, будем иметь  – за 3 месяца.

Следовательно, можно составить уравнение:

Ответ: 404 % – средний ежемесячный рост котировок акций.

IV. Закрепление материала. Решение задач

Задача 4. Цена товара за последние три квартала возрастала соответственно на 25 %, 116 % и 629 % по отношению к каждому предыдущему кварталу. Каков средний ежеквартальный процент роста цены за это время?

Решение.

Пусть Аруб – первоначальная цена, тогда в конце I квартала цена будет равна руб., в конце II квартала – руб., а в конце III квартала – руб. При среднем ежеквартальном росте в х% будем иметь в конце III квартала . Следовательно, можно составить уравнение:

 

Ответ: 170 % – средний ежеквартальный процент роста цен.

Задача 5. Производительность труда на заводе трижды увеличивалась на одно и то же число процентов. В результате число производимых за сутки станков увеличилось с 64 до 125 штук. На сколько процентов каждый раз увеличивалась производительность труда?

Решение.

 – количество станков после 1-го увеличения.
 – количество станков после 3-го увеличения.

Следовательно, можно составить уравнение:

Ответ: на 25 % увеличивалась производительность каждый раз.

            Задача 6. Предприятие увеличивало объем выпускаемой продукции ежеквартально на одно и то же число %. На сколько % ежеквартально увеличился объем продукции, если за 2 квартала он увеличился на 156 %?

Решение.

Ответ: на 60 % ежеквартально увеличивался объем продукции.

Задача 7. Себестоимость изделия понизилась за 1 полугодие на 10 %, а за второе – на 20 %. Определить первоначальную себестоимость изделия, если новая себестоимость стала 576 руб.

Решение:

А0 – исходная себестоимость товара

Ответ: исходная себестоимость 800 руб.

Задача 8. Вклад, положенный в сбербанк 2 года назад, достиг суммы, равной 1312,5 тыс. руб. Каков был первоначальный вклад при 25 % годовых?

Решение:


Ответ: 840 тыс. руб.

Задача 9. Цена товара была понижена на 20 %. На сколько % ее нужно повысить, чтобы получить исходную цену?

Решение:

Ответ: на 25 %.

V. Самостоятельная работа обучающего характера

Реши любые три задачи на выбор:

1. Пусть вкладчик положил на счет в банке 25000р. и в течение 3-х лет не будет снимать  деньги со счета. Подсчитаем, сколько денег будет на счете вкладчика через 3 года, если банк выплачивает 30% в год, и проценты после каждого начисления присоединяются к начальной сумме 25000р., т.е. капитализируются.
2. Зарплата служащему составляла 20000р. Затем зарплату повысили на 20%, а вскоре понизили на 20%. Сколько стал получать служащий?
3. На товар снизили цену сначала на 20%, а затем еще на 15%. При этом он стал стоить 23,8 тыс.р. Какова была первоначальная цена товара?
4. Завод увеличивал объем выпускаемой продукции ежегодно на одно и то же число процентов. Найти это число, если известно, что за 2 года объем выпускаемой продукции увеличивался на 21%.
5. Цену товара первоначально понизили на 20%, затем новую цену снизили еще на 30% и, наконец, после пересчета произвели снижение на 50%. На сколько процентов всего снизили первоначальную цену товара?

VI. Подведение итогов урока

Список литературы:

1. Литвинова И.Н., Ткаченко Е.Н., Гаврилова М.А./ Под ред. кандидата пед. наук М.А. Гавриловой. – Пенза: ПГПУ, 2004.-32с.
2. Симонов А.Я., Бакаев Д.С., Эпельман А.Г. и др. Система тренировочных задач и упражнений по математике. – М.: Просвещение, 1991. – 208с.