«Умственную самодеятельность, сообразительность и смекалку нельзя ни «вдолбить», ни «вложить» ни в чью голову. Результаты надёжны лишь тогда, когда введение в область математических знаний осуществляется в лёгкой и приятной форме, на предметах и примерах обыденной и повседневной обстановки, подобранных с надлежащим остроумием и занимательностью».
Е.И. Игнатьев «В царстве смекалки»
Цель обучающая: Научить анализировать условие задачи, выбирать рациональные способы решения, составлять уравнение, решать его, проверять правильность решения.
Цель воспитательная: Развитие абстрактного и логического мышления.
Ход урока
I. Актуализация опорных знаний.
1) Что называется уравнением? Что называется корнем уравнения? Что значит решить уравнение?
2) Решите уравнение .
Решение: а) ; ; x= ;
б) НОЗ=6; ; ; ; ;
3) Составьте буквенное выражение.
Наташа купила блокнот за m рублей, книгу на 20 рублей дороже блокнота и ручку в 2.5 раза дешевле книги. Сколько рублей стоит ручка?
Решение: (m+20) рублей цена книги, рублей цена ручки.
Решить задачу.
4) Из двух сёл, расстояние между которыми 10 км навстречу друг другу вышли мальчик и девочка и встретились через 2 часа. Скорость мальчика 3 км/час. Найдите скорость девочки.
Решение: а) 3*2=6(км) прошел мальчик, 10-6=4(км) прошла девочка, 4:2=2(км/ч) скорость девочки
б) 10:2=5(км/ч) скорость сближения, 5-3=2(км/ч) скорость девочки.
II. Сообщение темы и цели урока.
III. Решение задач составлением уравнения.
1) Андрей старше Олега на 4 года, а Олег старше Бориса в 1,5 раза. Вместе им 36 лет. Сколько лет каждому из них?
Первый ряд решает задачу, взяв за неизвестную величину возраст Андрея, второй ряд - возраст Олега, третий ряд-возраст Бориса. А затем каждый ряд объясняет своё решение у доски.
Условие задачи | Решение уравнения | Проверка |
Х лет Андрею, (х-4) лет Олегу, лет Борису, |
|
16+12+8=36 |
Х лет Олегу Х+4 тут Андрею лет Борису |
12+16+8=36 | |
Х лет Борису 1,5х лет Олегу (1,5х+4) лет Андрею |
8+12+16=36 |
Вывод.
Если в задаче несколько неизвестных величин, лучше обозначить буквой наименьшую из них.
2) Два пешехода вышли одновременно навстречу друг другу из двух посёлков и встретились через 3ч. Расстояние между посёлками 30 км. Найдите скорость каждого пешехода, если у одного она на 2 км/ч меньше, чем у другого.
а) Ученики решают задачу составлением уравнения.
Х км/ч – скорость 1-го пешехода
(х+2) км/ч – скорость 2-го пешехода
3х км прошел 1-й пешеход
3(х+2) км прошел 2-й пешеход
3х+3(х+2)=30 | 4 |
3х+3х+6=30 | +6 |
6х+6=30 | +12 |
6х=24 | +18 |
Х=4 | =30 |
б) Затем решают арифметическим способом.
30:3=10(км/ч)-скорость сближения.
10-2=8(км/ч)-две скорости 1-го пешехода.
8:2=4(км/ч)-скорость 1-го пешехода.
4+2=6(км/ч)-скорость 2-го пешехода.
Вывод. Арифметическое решение задачи более рациональное
3)Для распечатки 340 страниц были использованы две копировальные машины. Первая машина работала 10 минут, а вторая 15 минут. Сколько страниц в минуту печатает каждая машина, если первая печатает на 4 страницы больше, чем вторая?
Снова дети решают задачу алгебраически и арифметически.
А) х страниц за 1 минуту печатает 2-я машина,
(х+4) страниц за 1 минуту напечатает 1-я машина,
15х страниц напечатает 2 машина,
10(х+4) страниц напечатает 2 машина,
15х+10(х+4=340 | 12 |
15х+10х+40=340 | +16 |
25х+40=340 | +180 |
25х=300 | +160 |
Х=12 | =340 |
б) 10*4=40(стр) на столько страниц больше напечатает 1-я машина за 10 минут
340-40=300(стр) напечатали бы обе машины вместе, если бы у них были одинаковые скорости.
10+15=25(мин) работали обе машины.
300:25=12(стр) за 1-у минуту печатает 2-я машина.
12+4=16 (стр) за 1-у минуту печатает 1-я машина.
IV. Итоги урока.
При решении задач с помощью уравнения поступают следующим образом:
- Внимательно читают условие задачи.
- Обозначают неизвестную величину буквой.
- Переводят условие задачи на алгебраический язык.
- Составляют уравнение.
- Решают уравнение.
- Проверяют правильность решения
V. Домашнее задание.
Решить задачу алгебраически и арифметически.
Охотничья собака спугнула зайца, который сидел под кустом в 150м от неё. Через сколько минут собака догонит зайца, если она пробегает за 6 минут 3,6км, а заяц только 3км?
Литература:
- Л.В. Кузнецова, Е.А. Бунимович, Б.П. Пигарев, С.Б. Суворова «Алгебра» сборник заданий для проведения письменного экзамена по алгебре за курс основной школы. Москва. «Дрофа». 2001г; стр 43, работа №31, вариант 1(5); стр 50, работа №38, вариант 2(7); стр 65, работа №48, вариант 1(6).
- Составители Т.А. Братусь, Н.А. Жарковская, Е.А Рисс, Т.Е Савелова "Детский математический календарь 2001-2002". Санкт - Питербург стр10.
- Н.Т. Кострикина "Задачи повышенной трудности в курсе алгебры 7-9 классов". Москва. "Просвещение" 1991 стр5-19.