Открытие формулы длины окружности

Разделы: Математика


Цели:

  1. Образовательная – формирование у учащихся умений и навыков нахождения длины окружности с применением исследовательского метода, создание условий самоконтроля и взаимоконтроля усвоения знаний и умений;
  2. Развивающие – способствование формирования умений применять полученные знания в новой ситуации, развитие культуры речи, математического мышления;
  3. Воспитательные - воспитание познавательного интереса к математике, активности, умения общаться.

Оборудование: листы входного контроля, путевые листы, модели кругов из картона разного радиуса, плакаты, оценочные листы.

Тип урока: формирование новых знаний

План урока:

  • Организационный момент;
  • Устно-фронтальная работа;
  • Изучение нового материала;
  • Исторические сведения;
  • Упражнения на закрепление;
  • Домашнее задание;
  • Подведение итогов.

Ход урока

1. Организационный момент.

Вступительное слово учителя, постановка цели и мотивации обучения.

Учащиеся делают вывод:

- Что узнать?

- Что уметь?

2. Устно-фронтальная работа.

Учитель: “Сегодня на уроке вы работаете в режиме самооценки и взаимооценки. На партах лежат оценочные листы, подпишите их. Вы или сосед по парте будете выставлять в них оценки за работу на уроке. Напомните домашнее задание”.

Ученик: “Повторить всё об окружности, круге, приготовить модели кругов”.

Учитель: “Сейчас по листам входного контроля мы проверим теорию, необходимую для нашего открытия. Оцениваем по знакомым параметрам: правильность, полнота, культура речи”.

(по выполнению задания ребята выставляют себе оценку за устную работу, учитывая замечания учителя)

3. Изучение нового материала.

Учитель: “Возьмите путевые листы, на них описан алгоритм вашей работы. Внимательно с ним ознакомьтесь. Что является целью работы?”

Ученик: “Необходимо найти диаметр окружности, длину окружности, отношение длины окружности к диаметру, сравнить с результатом соседа и сделать вывод”.

Учитель: “Работаем по вариантам, первый вариант берет маленький кружок, второй – среднего диаметра, третий – большего диаметра. По окончанию работы данные записать в таблицу на доске и в тетради”.

Dм C C : Dм Dс C C : Dс Dб C C : Dб
                 

(взять ответы трех учащихся с каждого варианта)

Учитель: “Сравнив результаты отношений и округлив их до десятых долей, имеем, что в большинстве случаев отношение C : D = 3,1. Ребята, какой вывод можно сделать?”

Ученик: “Отношение всегда одинаковое, т. е. не зависит от длины окружности и диаметра” (учитель помогает правильно выразить мысль)

Учитель дает название отношению, вводит число , записывает формулы длины окружности через радиус и диаметр (формула длины окружности через радиус выводится вмести с учащимися).

Учитель: “Ребята, поменяйтесь тетрадями и оцените свою исследовательскую работу. Учитывается: выполненный объем работы, наличие вычислений, правильность полученного результата”

4. Исторические сведения.

Учитель: “Двум ученицам было дано задание подобрать интересный справочно – исторический материал по данной теме. Послушаем их ответы”.

1-я ученица: “Число часто встречается в математике. Оно связано с задачами на вычисление длины окружности и площади круга. Уже древние египтяне использовали число ? для решения задач на практике. Они принимали = 3. Высокая точность не была им необходима.

2-я ученица: “Довольно точное значение числа в 3 в. до н. э. нашел древнегреческий ученый Архимед. = 22 : 7, если округлить до сотых получим = 3,14”

1-я ученица: “Для обозначения частного от деления длины окружности на диаметр впервые букву ? использовал английский математик Джонс в 1706 году, но общепринятым это обозначение стало благодаря работам великого математика Эйлера. Он вычислил для числа 153 знака”.

Учитель: “Сейчас вычислено до 1 млн. знаков этого числа. Ребята, давайте посмотрим на эти плакаты, предложения на них помогут нам запомнить гораздо больше знаков числа ?”

ПЛАКАТ

ЧТО, Я ЗНАЮ О КРУГЕ?

3, 1 4 1 5

ЭТО, Я ЗНАЮ И ПОМНЮ ПРЕКРАСНО ПИ ЛИШНИЕ ЗНАКИ ТУТ ЧУЖДЫ НАПРАСНЫ.

3, 1 4 1 5 9 2 6 5 3 5 8

5. Упражнения на закрепление.

Повторить новые формулы.

На доске записаны задания:

А) R = 5 см, найти C.

Б) D = 100 м. найти C.

Выходной контроль:

  • На “3” - № 833;
  • На “4” - № 832;
  • На “5” - № 836.

Проверить решение с доски, поставить оценку.

6. Домашнее задание

7. Итог.

Выставить себе общую оценку за урок. Сдать листы.

Ответить на вопросы.

Какое открытие было сделано на уроке?

Что такое число ?

Чему равно число?

Имена каких ученых прозвучали при изучении этой темы?

Приложение