Применение основных тригонометрических формул к преобразованию выражений (10-й класс)

Разделы: Математика

Класс: 10


Цели:

  1. Повторить основные формулы тригонометрии и закрепить их знания в ходе выполнения упражнений;
  2. Развивать навыки самоконтроля, умений работать с компьютерной презентацией.
  3. Воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов.

Оборудование: Компьютеры, компьютерная презентация.

Ожидаемый результат:

  1. Каждый ученик должен знать формулы тригонометрии и уметь применять их для преобразования тригонометрических выражений на уровне обязательных результатов.
  2. Знать вывод этих формул и уметь применять их для преобразования тригонометрических выражений.
  3. Знать формулы тригонометрии, уметь выводить эти формулы и применять их для более сложных тригонометрических выражений.

Основные этапы урока:

  1. Сообщение темы, цели, задач урока и мотивация учебной деятельности.
  2. Устный счёт
  3. Сообщение из истории математики
  4. Повторение (с 9 класса) формул тригонометрии с помощью компьютерной презентации
  5. Применение тригонометрических формул к преобразованию выражений
  6. Выполнение теста
  7. Подведение итогов урока
  8. Постановка задания на дом

Ход урока

I. Организационный момент.

Сообщение темы, цели, задач урока и мотивация учебной деятельности

II. Устная работа (задания заранее распечатаны у каждого учащегося):

Радианная мера двух углов треугольника равна и . Найдите градусную меру каждого из углов треугольника. Ответ: 60, 30, 90

Найдите радианную меру углов треугольника, если их величины относятся как 2:3:4. Ответ: , ,

Может ли косинус быть равным: а) , б) , в), г) , д) -2 ? Ответ: а) да; б) нет; в) нет; г) да; д) да.

Может ли синус быть равным: а) –3, 7 б) , в)? Ответ: а) нет; б) да; в) нет.

При каких значения a и b справедливы следующие равенства: а) cos x = ; б)sin x=; в) cos x= ; г) tg x= ; д) sin x = a? Ответ: а) /a/ 7; б) /a/ ; в) 0 г) b – любое число; д) -

III. Сообщение из истории тригонометрии (краткая историческая справка):

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как её вычислительный аппарат, отвечающий практическим нуждам человека.

Некоторые тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции.

Греческий астроном Гиппарх во II в. до н. э. составил таблицу числовых значений хорд в зависимости от величин стягиваемых ими дуг. Более полные сведения из тригонометрии содержатся в известном “Альмагесте” Птолемея. Сделанные расчёты позволили Птолемею составить таблицу, которая содержала хорды от 0 до 180 .

Название линий синуса и косинуса впервые были введены индийскими учёными. Они же составили первые таблицы синусов, хотя и менее точные, чем птолемеевы.

В Индии начинается по существу учение о тригонометрических величинах, названное позже гониометрией (от “гониа” - угол и “метрио” - измеряю).

На пороге XVII в. в развитии тригонометрии начинается новое направление – аналитическое.

Тригонометрия даёт необходимый метод развития многих понятий и методы решения реальных задач, возникающих в физике, механике, астрономии, геодозии, картографии и других науках. Кроме этого, тригонометрия является большим помощником в решении стереометрических задач.

IV. Работа на компьютерах с презентацией :

“Основные формулы тригонометрии” (Приложение1)

Предварительно напомнить технику безопасности в кабинете информатики.

  • Основные тригонометрические тождества.
  • Формулы сложения.
  • Формулы приведения
  • Формулы суммы и разности синусов (косинусов).
  • Формулы двойного аргумента.
  • Формулы половинного аргумента.

V. Применение тригонометрических формул к преобразованию выражений.

а) Один учащийся выполняет задание на обороте доски, остальные с места проверяют и поднимают сигнальные карточки (верно – “+”, неверно – “- “ ) с места.

Выбрать ответ.

Упростить выражение 7 cos - 5.

а) 1+cos; б) 2; в) –12; г) 12

Упростить выражение 5 – 4 si n

а) 1; б) 9; в) 1+8sin; г) 1+cos.

Упростить выражение .

а) ctg; б) 0; в) ctg tg; г) 2tg

Упростить выражение 1 – sin

а) 0; б) sin в) 3cos г) 1 – sin 2

Упростить выражение cos

а)cos 2x; б) 2 sin; в) cos; г) cos

Ответ: 1) б; 2) а; 3) б; 4) б; 5) в.

б) Тренировочные упражнения (по учебнику А. Н Колмогорова)

Решить № 5 (б, г) и № 6 (устно).

Решить №7 ( а, б)

Решить 8 (самостоятельно)

VI. Выполнение теста ( выполняют либо на компьютерах)

Тест по теме “Тригонометрические формулы” (Приложение 2)

  1. Запишите cos с помощью наименьшего положительного числа: а) sin ; б) sin ; в) cos ; г) cos .
  2. Сравните с нулём выражения sin , cos 5 и tg 1,6. Выберите правильную серию ответов: а) - - + ; б) + + - ; в) - + -; г) - + +.
  3. Найдите значение выражения 5 sin -3cos+ tg а) 2,5; б) 1, 25; в) 1,75; г) 1, 5
  4. Упростите выражение а) cos ; б) -sin; в) sin ; г) cos .
  5. Дано: cos . Найдите sin () а) -; б) ; в) ; г) - .
  6. Упростите выражение а) 2tg2; б) –2ctg 2; в) 2ctg 2; г) –2 tg 2.
  7. Оцените значение выражения 2 – 3 sin а) б) в) г)
  8. Найдите значение выражения , если tg = - 2 а) -; б) – 3; в) ; г) –5.
  9. Преобразуйте sin x – cos x в выражение вида A sin (x+) а) б) в) г)
  10. Найдите , если cos 51- cos = 2 sin 17sin 68 а) ; б) ; в) ; г) .

Подведение итогов, рефлексия.

Продолжите фразу:

“ Сегодня на уроке я узнал…”;

“Сегодня на уроке я научился…”;

“Сегодня на уроке я познакомился…”

“Сегодня на уроке я повторил…”

“Сегодня на уроке я закрепил…”

- А зачем мы учимся преобразовывать выражения с помощью тригонометрических формул? (Для решения тригонометрических уравнений)

VIII. Домашнее задание: п1 и п2; решить № 9, №10(а), №11, №12.

Приложение