Тема урока: "Примеры использования обратных тригонометрических функций". 10-й класс
Цель: формирование алгоритма вычислений значений тригонометрических выражений, в которых участвуют обратные тригонометрические функции и применение алгоритма для решения более сложных задач.
Задачи:
- Научить применять определения арксинуса, арккосинуса, арктангенса и арккотангенса для нахождения значений выражений, содержащих аркфункции.
- Составить алгоритм вычисления синуса, косинуса, косинуса, тангенса и котангенса то арксинуса, арккосинуса, арктангенса и арккотангенса.
- Формировать способность оценивать поставленную задачу и по
результатам анализа научить составлять алгоритм действий по решению
новой задачи.
В начале урока учащимся выдаются листы оценивания, где по ходу урока выставляется самооценка и оценка учителя по различным этапам урока (“теория” – максимальное количество баллов 3; “формирования алгоритма” 5 баллов; “работа по алгоритму” – 7 баллов; “исследовательская работа” – 10 баллов.) (Смотри Приложение).
Ход урока:
I. Актуализация знаний.
1. На уроках мы с вами занимались изучением обратных тригонометрических функций.
- Какие обратные тригонометрические функции вы знаете? (y=arcsin
x, x
[-1;1]; y=, x
[-1;1]; y=arctg x,
x
[-
;+
]; y=arcctg x, x
[-
;+
]) - Дайте определение арксинуса, арккосинуса, арктангенса и
арккотангенса числа a. (arcsin a=?, где a
[-1;1], а ?
[-
/2;
/2];
arccos a= ?, где a
[-1;1], а
[0;
]; arctg a=
, где a
[-
;+
], а
[-
/2; 
/2]; arcctg a =
, где a
[-
;+
], а
[0;
]) - Перечислите формулы для арксинуса, арккосинуса, арктангенса и арккотангенса по группам.
- (sin (arcsin a)=a, a
[-1;1]; cos(arccos a)=a, a
[-1;1]; tg(arctg a)=a, a
[-
;+
];
ctg(arcctga)=a, a
[-
;+
]). - arcsin(sin
)=
, 
[-/2;
/2];arccos(cos
)=
,

[0;
]; arctg(tg
)=
, 
[-
/2;
/2]; arcctg(ctg
)=
, 
[0;
].
2. Распределите данные выражения на 2 группы, при решении которых может быть использована та или иная группа формул.

Рисунок 1.
Значения каких выражений могли бы найти устно? Каких нет? Почему? Какова же цель нашего урока? (Цель: нахождение способа решений выражений синуса, косинуса, тангенса и котангенса, аргументами, которых являются арксинус, арккосинус, арктангенс и арккотангенс.)
II. Формирование алгоритма по решению задач нового типа:

Рисунок 2.
1) Используя алгоритм, вычислите значения выражения:
ctg(arcos(
)) .
Ответ:
.
2) Работа 2-х групп на закрытых досках (все остальные в тетрадях
с последующей проверкой). tg(arcsin
). (Ответ:
); sin(
-arctg
).
(Ответ:
). Самостоятельная проверка (с последующей проверкой)
cos (arctg 3). (Ответ:
).
III. Исследовательская работа.
Учащиеся разбиваются на группы (по 4-5 человек). Можно использовать при работе любой справочный материал, учебники, таблицы и т.д. для решения следующих задач:
a) sin (2 arcsin
).
b) sin (arctg
– arcos
).
Найденные решения записываются на доске, и идет обсуждение и анализ полученных результатов.
IV. Домашняя работа.
Смотри приложение.
1-й столбик – вычислить;
2-й столбик – сформулировать алгоритм нахождения значений выражений.
V. Подведение итогов урока.
Подсчитывается средний балл по самооценке и оценке учителя и составляется рейтинг успешности учащихся по данной теме.