Логические схемы. Переход от логического выражения к логической схеме и наоборот

Разделы: Информатика


Цели:

1. Образовательные

  • Основные логические операции.
  • Построение таблиц истинности сложных высказываний.
  • Логические схемы и логические выражения.

2. Развивающие

  • Развитие исследовательской и познавательной деятельности.
  • Лаконично, полно и содержательно отвечать и делать обобщающие выводы.

3. Воспитательные

  • Формирование аккуратности при работе с компьютером.
  • Понимание связей между другими учащимися, культурой поведения.

Тип урока: комбинированный

Методы организации учебной деятельности:

  • фронтальная
  • индивидуальная
  • ученик-компьютер

Программно-дидактическое обеспечение: ПК, презентация, задание для практической работы, раздаточный материал, Electronics Workbench (EWB512), PowerPoint.

ХОД УРОКА

I. Организационный момент.

II. Актуализация ранее изученного материала и проверка домашнего задания.

Задания для выполнения в тетради и у доски.

№1. Составьте таблицы истинности для следующих логических выражений:

№3. Нарисовать на доске логические элементы И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ.

III. Новый материал.

Над возможностями применения логики в технике ученые и инженеры задумывались уже давно. Например, голландский физик Пауль Эренфест (1880 - 1933), еще в 1910 году писал: "...Пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить:

1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции;
2) не содержит ли она излишних усложнений.

Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое "или-или", воплощенное в эбоните и латуни; все вместе - система чисто качественных... "посылок", ничего не оставляющая желать в отношении сложности и запутанности... правда ли, что, несмотря на существование алгебры логики, своего рода "алгебра распределительных схем" должна считаться утопией?".

Созданная позднее М.А. Гавриловым (1903 - 1979) теория релейно-контактных схем показала, что это вовсе не утопия.

Посмотрим на микросхему. На первый взгляд ничего того, что нас бы удивило, мы не видим!
Но если рассматривать ее при сильном увеличении, она поразит нас своей стройной архитектурой. Чтобы понять, как она работает, вспомним, что компьютер работает на электричестве, то есть любая информация представлена в компьютере в виде электрических импульсов.

Почему необходимо уметь строить логические схемы?

Дело в том, что из вентилей составляют более сложные схемы, которые позволяют выполнять арифметические операции и хранить информацию. Причем схему, выполняющую определенные функции, можно построить из различных по сочетанию и количеству вентилей. Поэтому значение формального представления логической схемы чрезвычайно велико. Оно необходимо для того, чтобы разработчик имел возможность выбрать наиболее подходящий ему вариант построения схемы из вентилей. Процесс разработки общей логической схемы устройства (в том числе и компьютера в целом), становится иерархическим, причем на каждом следующем уровне в качестве "кирпичиков" используются логические схемы, созданные на предыдущем этапе.
Алгебра логики дала в руки конструкторам мощное средство разработки, анализа и совершенствования логических схем. В самом деле, гораздо проще, быстрее и дешевле изучать свойства и доказывать правильность работы схемы с помощью выражающей ее формулы, чем создавать реальное техническое устройство. Именно в этом состоит смысл любого математического моделирования.

Логические схемы необходимо строить из минимально возможного количества элементов, что в свою очередь, обеспечивает большую скорость работы и увеличивает надежность устройства.

Правило построения логических схем:

1) Определить число логических переменных.
2) Определить количество базовых логических операций и их порядок.
3) Изобразить для каждой логической операции соответствующий ей вентиль и соединить вентили в порядке выполнения логических операций.

Рассмотрение двух примеров перехода от выражения к схеме. (Презентация)

Рассмотрение двух примеров перехода от схемы к выражению. (Презентация)

Чаще в жизни возникает ситуация, когда известен результат и для его реализации необходимо построить устройство.

Рассмотрим следующую задачу: (Презентация)

Задача 1. В двухэтажном доме лестница освещается одной лампой Х. На первом этаже установлен один выключатель А, на втором этаже - выключатель В. Если включают А, то лампа загорается. При поднятии на второй этаж и включении В лампа гаснет. Если кто-то выходит и нажмет В, то лампа включается, при спуске на первый этаж и нажатии А лампа должна погаснуть.

Алгоритм решения:

  • Составить таблицу истинности.
  • Определить логическую функцию.
  • Построить логическую схему.

 

A B X
0 0 0
1 0 1
1 1 0
0 1 1
0 0 0

Чтобы создать логическую функцию по таблице истинности, надо записывать значения выходной переменной.

Между строками таблицы будет стоять знак логического сложения, а между столбцами - знак логического умножения .

Задача 2. (Презентация)

IV. Закрепление изученного материала.

Работа у доски и в тетради по карточкам.

№1. По логическому выражению построить логическую схему:

№2. По логической схеме составьте логическое выражение:

V. Компьютерный практикум.

Практическая работа с использованием электронной лаборатории Electronics Workbench (EWB512).

Вариант 1

1. Упростите логическое выражение

2. Проверьте свою работу, используя программу Electronics Workbench:

- Запишите исходное выражение в Logic Converter;
- Составьте таблицу истинности
- Упростите выражение используя
- Постройте упрощенную логическую схему .

3. Проверьте правильность выполненных упрощений.

VI. Домашнее задание:

а) упростите логическое выражение, постройте логическую схему и таблицу истинности
б) по таблице истинности (00001011) составьте выражение, упростите его, нарисуйте схему.