Тема: «Методы решения тригонометрических уравнений».
Цели урока:
образовательные:
- сформировать навыки различать виды тригонометрических уравнений;
- углубление понимания методов решения тригонометрических уравнений;
воспитательные:
- воспитание познавательного интереса к учебному процессу;
- формирование умения анализировать поставленную задачу;
развивающие:
- формировать навык проводить анализ ситуации с последующим выбором наиболее рационального выхода из нее.
Оборудование: плакат с основными тригонометрическими формулами, компьютер, проектор, экран.
Начнем урок с повторения основного приема решения любого уравнения: сведение его к стандартному виду. Путем преобразований линейные уравнения сводят к виду ах = в, квадратные – к виду ax 2 + bx + c =0. В случае тригонометрических уравнений необходимо свести их к простейшим, вида: sinx = a , cosx = a , tgx = a , которые легко можно решить.
В первую очередь, конечно, для этого необходимо использовать основные тригонометрические формулы, которые представлены на плакате: формулы сложения, формулы двойного угла, понижения кратности уравнения. Мы уже умеем решать такие уравнения. Повторим некоторые из них:
Вместе с тем существуют уравнения, решение которых требует знаний некоторых специальных приемов.
Темой нашего урока является рассмотрение этих приемов и систематизация методов решения тригонометрических уравнений.
Методы решения тригонометрических уравнений.
1. Преобразование к квадратному уравнению относительно какой-либо тригонометрической функции с последующей заменой переменной.
2. Решение уравнений методом разложения на множители.
3. Решение однородных уравнений.
4. Введение вспомогательного аргумента.
Рассмотрим каждый из перечисленных методов на примерах, но более подробно остановимся на двух последних, так как два первых мы уже использовали при решении уравнений.
1. Преобразование к квадратному уравнению относительно какой-либо тригонометрической функции.
2. Решение уравнений методом разложения на множители.
3. Решение однородных уравнений.
Однородными уравнениями первой и второй степени называются уравнения вида:
соответственно (а ≠ 0, b ≠ 0, с ≠ 0 ).
При решении однородных уравнений почленно делят обе части уравнения на cosx для (1) уравнения и на cos 2 x для (2). Такое деление возможно, так как sinx и cosx не равны нулю одновременно – они обращаются в нуль в разных точках. Рассмотрим примеры решения однородных уравнений первой и второй степени.
Запомним это уравнение: при рассмотрении следующего метода – введение вспомогательного аргумента, решим его другим способом.
4. Введение вспомогательного аргумента.
Рассмотрим уже решенное предыдущим методом уравнение:
Как видим, получается тот же результат.
Рассмотрим еще один пример:
В рассмотренных примерах было, в общем, понятно, на что требуется разделить исходное уравнение, чтобы ввести вспомогательный аргумент. Но может случиться, что не очевидно, какой делитель выбрать. Для этого существует специальная методика, которую мы сейчас и рассмотрим в общем виде. Пусть дано уравнение:
Разделим уравнение на квадратный корень из выражения (3), получим:
asinx + bcosx = c ,
тогда a 2 + b 2 = 1 и, следовательно, a = sinx и b = cosx . Используя формулу косинуса разности, получим простейшее тригонометрическое уравнение:
которое легко решается.
Решим еще одно уравнение:
Сведем уравнение к одному аргументу – 2 x с помощью формул двойного угла и понижения степени:
Аналогично предыдущим уравнениям, используя формулу синуса суммы, получаем:
что тоже легко решается.
Решите самостоятельно, определив предварительно метод решения:
Итогом урока является проверка решения и оценка учащихся.
Домашнее задание: п. 11, конспект, № 164(б, г), 167(б, г), 169(а, б), 174(а, в).