Основные методы решения задач на смешивание растворов

Разделы: Математика, Химия


“Только из союза двоих, работающих вместе и при помощи друг друга, рождаются великие вещи.”

Антуан Де Сент-Экзюпери

Математика многообразна и многогранна. Существует ряд ситуаций в образовательном процессе, когда при изучении какой-либо темы по физике, химии, биологии и т.д. затрагиваются понятия математики, например, существуют задачи, которые решают как на уроках математики, так и на уроках химии. Способы решения задач представляют и учителя химии, и математики, но есть проблема: математики знают математику, а химики - химию. И не всегда способы совпадают.

В данной статье приводятся рекомендации по решению химических задач на смешение растворов разными способами: с помощью расчетной формулы, “Правила смешения”, “Правила креста”, графического метода, алгебраического метода. Приведены примеры решения задач.

1. Основные химические понятия

Приведем некоторые указания к решению задач на растворы.

Основными компонентами этого типа задач являются:

а) массовая доля растворенного вещества в растворе;

б) масса растворенного вещества в растворе;

в) масса раствора.

Предполагают, что:

а) все получившиеся смеси и сплавы являются однородными;

б) смешивание различных растворов происходит мгновенно;

в) объем смеси равен сумме объемов смешиваемых растворов;

г) объемы растворов и массы сплавов не могут быть отрицательными.

Определения и обозначения.

Массовая доля растворенного вещества в растворе - это отношение массы этого вещества к массе раствора.

где - массовая доля растворенного вещества в растворе;

- масса растворенного вещества в растворе;

- масса раствора.

Следствия формулы (1):

Введем обозначения:

- массовая доля растворенного вещества в первом растворе;

- массовая доля растворенного вещества во втором растворе;

- массовая доля растворенного вещества в новом растворе, полученном при смешивании первого и второго растворов;

m1(в-ва), m2(в-ва), m(в-ва) - массы растворенных веществ в соответствующих растворах;

m1(р-ра), m2(р-ра), m(р-ра) - массы соответствующих растворов.

Основными методами решения задач на смешивание растворов являются: с помощью расчетной формулы, “Правило смешения”, “Правило креста”, графический метод, алгебраический метод.

Приведем описание указанных методов.

1.1. С помощью расчетной формулы

В наших обозначениях, получим формулу для вычисления массовой доли вещества (?) в смеси.

1. Масса полученного при смешивании раствора равна:

m(р-ра) = m1(р-ра) + m2(р-ра).

2. Определим массы растворенных веществ в первом и втором растворах:

m1(в-ва)= •m1(р-ра), m2(в-ва)=   •m2(р-ра).

3. Следовательно, масса растворенного вещества в полученном растворе вычисляется как сумма масс веществ в исходных растворах:

m(в-ва) = m1(в-ва) + m2(в-ва) = •m1(р-ра) + •m2(р-ра).

4. Таким образом, массовая доля растворенного вещества в полученном растворе равна:

или

или

img9.gif (526 bytes)

где - массы соответствующих растворов.

Замечание: При решении задач удобно составлять следующую таблицу.

 

1-й раствор

2-й раствор

Смесь двух растворов

Масса растворов

m1

m2

m1 + m2

Массовая доля растворенного вещества

Масса вещества в растворе

m1

m2

(m1 + m2)

1.2. “Правило смешения”

Воспользуемся формулой (4):

тогда 

Отсюда

Таким образом, отношение массы первого раствора к массе второго равно отношению разности массовых долей смеси и второго раствора к разности массовых долей первого раствора и смеси.

Аналогично получаем, что при

Замечание: Формула (5) удобна тем, что на практике, как правило, массы веществ не отвешиваются, а берутся в определенном отношении.

1.3. “Правило креста”

“Правилом креста” называют диагональную схему правила смешения для случаев с двумя растворами.

Слева на концах отрезков записывают исходные массовые доли растворов (обычно слева вверху-большая), на пересечении отрезков - заданная, а справа на их концах записываются разности между исходными и заданной массовыми долями. Получаемые массовые части показывают в каком отношении надо слить исходные растворы.

1.4. Графический метод

Отрезок прямой (основание графика) представляет собой массу смеси, а на осях ординат откладывают точки, соответствующие массовым долям растворенного вещества в исходных растворах. Соединив прямой точки на осях ординат, получают прямую, которая отображает функциональную зависимость массовой доли растворенного вещества в смеси от массы смешанных растворов в обратной пропорциональной зависимости

Полученная функциональная прямая позволяет решать задачи по определению массы смешанных растворов и обратные, по массе смешанных растворов находить массовую долю полученной смеси.

Построим график зависимости массовой доли растворенного вещества от массы смешанных растворов. На одной из осей ординат откладывают точку, соответствующую массовой доли , а на другой - . Обозначим на оси абсцисс точки А и В с координатами (0,0) и (m1 + m2,0), соответственно. На графике точка А(0,0) показывает, что массовая доля всего раствора равна , а точка В(m1 + m2,0) - массовая доля всего раствора равна . В направлении от точки А к точке В возрастает содержание в смеси 2-го раствора от 0 до m1+ m2 и убывает содержание 1-го раствора от m1+ m2 до 0. Таким образом, любая точка на отрезке АВ будет представлять собой смесь, имеющую одну и ту же массу с определенным содержанием каждого раствора, которое влияет на массовую долю растворенного вещества в смеси.

Замечание: Данный способ является наглядным и дает приближенное решение. При использовании миллиметровой бумаги можно получить достаточно точный ответ.

1.5. Алгебраический метод

Задачи на смешивание растворов решают с помощью составления уравнения или системы уравнений.

2. Примеры решения задач

Задача 1. (№1.43, [1])

В 100 г 20%-ного раствора соли добавили 300 г её 10%-ного раствора. Определите процентную концентрацию раствора.

Решение:

  1. C помощью расчетной формулы
  2. Графический
  3. Ответ: 12,5%

  4. Путем последовательных вычислений
    • Сколько растворенного вещества содержится:
    • а) в 100 г 20%-ного раствора; [100•0,2 = 20(г)]

      б) в 300 г 10%-ного раствора? [300•0,1 = 30(г)]

    • Сколько вещества содержится в образовавшемся растворе?
    • 20 г + 30 г = 50 г

    • Чему равна масса образовавшегося раствора?
    • 100 г + 300 г = 400 г

    • Какова процентная концентрация полученного раствора?
    • (50/400)100 = 12,5(%)

      Ответ: 12,5%

  5. Алгебраический
  6. Пусть х - процентная концентрация полученного раствора. В первом растворе содержится 0,2•100(г) соли, а во втором 0,1•300(г), а в полученном растворе х•(100 + 300)(г) соли. Составим уравнение:

    0,2•100 + 0,1•300 = х•(100 + 300);

    х = 0,125 (12,5%)

    Ответ: 12,5%

Задача 2. u(№10.26, [1])

Смешали 10%-ный и 25%-ный растворы соли и получили 3 кг 20%-ного раствора. Какое количество каждого раствора в килограммах было использовано?

Решение:

  1. Алгебраический
  2. а) C помощью уравнения:

    Пусть х (кг) - масса 1-го раствора, тогда 3-х (кг) -масса 2-го раствора.

    0,1•х (кг) содержится соли в 1-ом растворе,

    0,25•(3-х) (кг) содержится соли в 2-ом растворе,

    0,2•3 (кг) содержится соли в смеси.

    Учитывая, что масса соли в 1-ом и 2-ом растворах равна массе соли в смеси, составим и решим уравнение:

    0,1•х + 0,25•(3-х) = 0,2•3;

    0,15х = 0,15;

    х = 1, 1кг-масса 1-го раствора

    3 - х = 3 - 1 =2 (кг) - масса 2-го раствора.

    Ответ: 1 кг, 2 кг.

    б) С помощью системы уравнений

    Пусть х (кг) - количество первого раствора, у (кг) - количество второго раствора. Система уравнений имеет вид:

    Ответ: 1 кг, 2 кг.

  3. Графический.
  4. Ответ: 1кг, 2кг.

  5. “Правило смешения”
  6.  

  7. “Правило креста”
  8. Составим диагональную схему

    Ответ: 1кг, 2кг.

Задача 3 ([2])

Сосуд емкостью 5 л содержит 2 л р%-ного (по объёму) раствора соли. Сколько литров 20%-ного раствора такой же соли надо налить в сосуд, чтобы процентное содержание соли в сосуде стало наибольшим?

Решение (графический способ)

Заметим, что по условию, объём второго раствора не превышает трёх литров.

  1. Ели р < 20, то для того, чтобы получить максимальную массовую долю вещества в растворе, необходимо добавить 3 л 20% - ного раствора соли;
  2. Если р = 20, то при добавлении 2-го раствора, процентное содержание соли в растворе не изменится, следовательно, можно прилить от 0 л до 3 л 20% - ного раствора соли;
  3. Если р > 20, то при добавлении 2-го раствора, процентное содержание соли будет уменьшаться, т.е. прилить нужно 0 л.

Ответ: 3 л, если 0 < р < 20, [0,3], если р = 20, 0л, если 20 < р 100.

Задача 4 (работа 5, №2, [1])

В двух сосудах по 5л каждый содержится раствор соли. Первый сосуд содержит 3л р% - ного раствора, а второй - 4л 2р% - ного раствора одной и той же соли. Сколько литров надо перелить из второго сосуда в первый, чтобы получить в нем 10% - ный раствор соли? При каких значениях р задача имеет решение?

Решение

Найдем, при каких значениях р задача имеет решение. По условию задачи 5-ти литровый сосуд содержит 3л первого раствора, следовательно, к нему можно прилить от 0 до 2л второго раствора.

Имеем, Решая неравенство, получаем

Ответ:

3. Заключение

Данные рекомендации предназначены учителям математики, желающим организовать элективные курсы, как в девятых, так и в десятых и одиннадцатых классах. Цель создаваемых курсов: научить учащихся пользоваться математическим аппаратом при решении химических задач.

Список литературы

  1. Галицкий и др. Сборник задач по алгебре для 8-9 классов: Учебное пособие для учащихся шк. и классов с углубл. изуч. математики / М.Л. Галицкий, А.М. Гольдман, Л.И. Звавич.-2-е изд. - М.: Просвещение,1994. - 271с.
  2. Сборник задач по математике для поступающих в вузы: Учебное пособие/ П.Т.Дыбов, А.И.Забоев, А.С. Иванов и др.; Под ред. А.И. Прилепко. - М.:Высш. школа, 1983. - 239 с.
  3. Ерыгин Д.П., Шишкин Е.А. Методика решения задач по химии: Учебное пособие для студентов пед. ин-тов по биол. и хим. спец. - М.: Просвещение,1989. - 176с.
  4. Хомченко Г.П., Хомченко И.Г. Задачи по химии для поступающих в вузы: Учебное пособие. - 2-е изд.. исправ. и доп. - М.: Высш. школа, 1993. - 302 с.