Урок алгебры в 11-м классе на тему: "Вычисление площадей фигур"

Разделы: Математика


Цели урока:

1) Повторить, закрепить и расширить знания по заданной теме.

2) Уметь самостоятельно применять полученные знания по теме к решению задач.

3) Уметь рационально решать задачи.

4) Творчески подходить к решению конкретной задачи.

1. Повторение теоретического материала

Фронтальный опрос (по таблице “Площади фигур”)

Вопрос: Как найти площади изображенных фигур?

Ответ:

2. Разминка (на 3 мин., в тетрадях только решение)

Задача. Найти площади изображенных фигур. Ответы с комментариями.

3. Программированный контроль

Задания

Ответы

Вычислить площадь фигуры, ограниченной линиями:

       

I вариант

II вариант

1

2

3

4

y=x2+2, y=x+2

y=-x2+4, y=-x+4

7

1/6

2/3

1/3

y=sin2x,y=0

x=0, x=/4

y=cos2x, y=0

x=-/4, x=/4

2

-1

1/2

1

y=-2/х, y=2

x=-4, x=-1

y=-1/х, y=1

x=-3, x=-1

6-4ln2

2-ln3

2ln2

2-3ln2

Верные ответы: I вариант: 2,3,1 II вариант: 2,4,2

4. Решение задач на закрепление (с проверкой у доски)

1) Найти площадь фигуры, ограниченной линиями

2) Фигура, ограниченная линиями y=x+6, x=1, y=0 делится параболой y=x2+2x+4 на две части. Найти площадь каждой части.

3) Найти ту первообразную F(x) функции f(x)=2x+4, график которой касается прямой у=6х+3. Вычислить площадь фигуры, ограниченной графиком найденной первообразной и прямыми у=6х+3 и у=0.

4) Составить формулы для нахождения площадей фигур, изображенных на таблице:

Ответы с комментариями:

5) Интересная задача. Найти сумму площадей бесконечного количества фигур, заштрихованных на рисунках:

(Аргумент каждой следующей функции увеличивается в 2 раза)

Указания к решению: sin nx=0 ; x=/n;

где n=1,2,4,8,16…;

S=2+1+1/2+1/4+1/8+…=2/(1-1/2)=4

Ответ: 4.

5. Задачи с индивидуальным подходом

Задачи, которые прокомментируют сейчас ученики, имеют индивидуальный подход. Поэтому, прежде чем приступить к их решению, надо проанализировать заданную ситуацию. Решения этих задач в тетрадях не пишутся, дома же вы их решите, по возможности, несколькими способами.

1) Найти площадь фигуры, ограниченной линиями y=x2-4x+8 и y=3x2-x3, если х[-2;3]

Решение:

  • Если не рисовать графиков данных функций, то надо узнать имеют ли эти графики общие точки на (-2;3).Для этого надо решить уравнение:

3x2-x3= x2-4x+8. Итак, х=2 и х=-2. 2(-2;3).

Не зная, график какой из функций находится выше другого на (-2;2) и (2;3], площадь фигуры находится так

 

  • Если же нарисовать графики данных функций (что очень не сложно), то замечаем, что всюду на [-2;3] выполняется неравенство: х2-4x+823
  • Сравнивая формулы, полученные для вычисления площади S, видим, что в данном примере значительно легче искать площадь после того, как нарисованы графики функций. А можно ли всё-таки решить задачу, не делая рисунка? Найдите ещё один способ решения! Но есть задачи, в которых построение графиков затруднено.

2) Найти площадь фигуры, ограниченную линиями: y=x2-4x+sin2x/2 и y=-3-cos2x/2, если х[2;3].

Решение:

Так как графики данных функций построить трудно, то можно выяснить соотношение между функциями, не используя графиков. Исследуем разность данных функций:

x2-4x+sin2x/2-(-3-cos2x/2)=x2-4x+4=(х-2)2 0

Следовательно, x2-4x+sin2x/2>-3-cos2x/2 на [2;3], а, значит, график первой функции лежит выше графика второй функции и

3) Вычислить площадь фигуры, ограниченной данными линиями:y=x2 при x0, y=1, y=4, x=0

Решение:

Данная фигура симметрична криволинейной трапеции, ограниченной прямыми х=1, х=4, у=0, графиком функции , обратной у=х2, x0. Поэтому эти фигуры имеют равные площади и .

А всегда ли рационально использовать интеграл при нахождении площади фигуры?

4) Найти площадь фигуры, ограниченной прямыми у=3х+1, у=9-х, у=х+1.

Решение:

Вершины полученного ABC имеют координаты: А(0;1), В(2;7), С(4;5).

Можно заметить, что ABC - прямоугольный (произведение угловых коэффициентов прямых у=х+и у=9-х равно -1). Поэтому применение интеграла для вычисления S(ABC) не рационально. Её всегда можно найти как разность площадей треугольников, у которых известны высота и основание или же можно использовать координатный метод.

6. Домашнее задание

Найти площади фигур, ограниченных линиями (1-7)

  1. у=х20), у=1, у=4, х=0
  2. у=х2-4х+8, 3х23, если если х[-2;3]
  3. у=х2-4х+sin2(x/2), y=-3-cos2(x/2), если х[2;3]
  4. у=3х+1, у=9-х, у=х+1
  5. у=|x-2|,
  6. x|y|=2;x=1;x=3
  7. y= arcsin x; у=0; x=0,5; x=1
  8. При каком значении а прямая х=а делит площадь фигуры, ограниченной линиями у=2/х; х=1; х=3 в отношении 1:3?
  9. Вычислить   исходя из его геометрического смысла.

Составить карточку (можно несколько) для зачета, в которой должны быть:

  1. Теоретический вопрос: (определение, свойств без доказательства)
  2. Теоретический вопрос: (с доказательством)
  3. Пример на вычисление неопределенного интеграла (одним из методов)
  4. Пример на вычисление определённого интеграла.
  5. Пример на нахождение первообразной сложной функции.
  6. Пример на нахождение площади фигуры.

7. Итог урока