В методической литературе всё чаще задаются вопросом: “Нужно ли изучать в школе интегралы?” На что с уверенностью можно ответить: “Конечно же!” И дело здесь не в том, что интегральное исчисление возникает раньше дифференциального в истории науки (а этот факт должен быть обязательно учтён при построении школьного материала), а скорее в том, что интегралы могут выступать не как самоцель, а как аппарат для закрепления базового материала.
Часто при изучении интегрального исчисления в школе рассматриваются лишь основные моменты данного раздела: нахождение первообразных функции, вычисление определённых интегралов, отыскание площадей плоских фигур и объёмов тел вращения. Да, мы не спорим, что данные вопросы являются базовыми и необходимыми, ведь именно они раскрывают основную суть процесса интегрирования, но где же творческий подход в обучении математике? Где он?
Именно на эти и другие возникающие вопросы мы постараемся ответить в своей статье.
Порой мы просто-напросто ограничиваем тему "Интеграл" учебников и делаем её недоступной для другого математического материала, входящего в рамки школьной программы. Многие из учителей забывают, что, используя несложные конструкции, содержащие определённые интегралы, можно составить прекрасные уравнения, неравенства, их системы, различные задачи с параметрами, решение которых вызовет лишь положительное одобрение со стороны школьников. И это действительно так. Решая достаточно большое количество стандартизованных задач, учащиеся вскоре приходят к усталости, усталости решать "одно и тоже". В этот момент "мозговой штурм" сменяется "мозговым спадом", что на наш взгляд, не хотел бы наблюдать на своём уроке каждый учитель. И вот тогда на помощь могут прийти всё те же конструкции. Благодаря им, учащиеся будут стремиться вычислить не только сам интеграл, но и применить полученные в ходе вычисления результаты к решению конкретной задачи, которая в свою очередь вызовет интерес у школьников. Таким образом, нам удастся восстановить атмосферу сотрудничества на уроке и локализовать "штурм" в каждом из учеников.
Составляя конструкции, мы сможем осуществить внутриматематическое моделирование, которое позволит доказать учащимся то, что тема "Интеграл" не существует сама по себе, автономно, а великолепно и в полном объёме используется при решении задач ранее изученных тем.
Также одним из существенных моментов при решении задач, содержащих конструкции, является то, что учащиеся сталкиваются с тем, что в пределах интегрирования появляются переменные (до этого были лишь постоянные), для которых чаще всего приходится проводить анализ и находить их ОДЗ. Ведь вне ОДЗ многие определённые интегралы не вычислимы, тогда мы сталкиваемся с несобственными интегралами, решение которых не предусматривается школьной программой. Поэтому при составлении любых конструкций данный факт должен обязательно учитываться. Именно анализ заставляет учащихся сомневаться, делает процесс вычисления познавательным и привлекает к себе класс.
Заинтересованный ученик всегда активен. Он стремится решить, понять, осознать. Поддержание данного стремления – основная задача учителя, его мастерство и профессионализм.
В нашей статье мы приводим примеры некоторых из конструкций, которые могут быть использованы в конкретных ситуациях. К каждому заданию прилагается по два варианта с решениями.
I. Решить уравнения.
А) ,
Решение. Вычислим интеграл:.
Тогда . Решая полученное уравнение, находим, что x = 0, x = + 1, x = – 2.
Ответ: – 2, – 1, 0, 1.
Следует отметить, что в данном задании ничего не потребовалось, кроме техники нахождения простейших интегралов и решения уравнения, в том числе кубического.
Б) .
Решение. (В силу того, что интеграл неопределён при , то подобные точки выколоты из области задания). Вычислим значение интеграла:
.
Для удобства проведём вычисления по отдельности:,
.
Приравнивая левую и правую часть равенства, получим:. Решая полученное тригонометрическое уравнение, имеем , где .
Но так как (по условию), то подбором устанавливаем, что .
Ответ: .
В данном задании учащимся приходится проводить исследовательскую работу с целью нахождения ОДЗ, решением тригонометрического уравнения, отбором корней. Здесь же они сталкиваются с вычислением нетабличного интеграла, для решения которого применяется подстановка, с которой многие учителя сталкиваются в своей преподавательской практике. Только правильный выбор подстановки и её использование приведёт к желаемому результату.
II. Решить неравенства.
А) ,
Решение. Вычислим определённый интеграл:
.
Тогда .Приравняем многочлен, стоящий в левой части к нулю и находим корни уравнения . Откуда . Методом интервалов решаем неравенство : откуда
Ответ: .
Б) .
Решение. По отдельности вычислим интеграл, стоящий в левой части и интеграл, стоящий в правой части неравенства:
; .
Тогда
Ответ: .
Существенных трудностей задания А) и Б) не вызывают.
III. Оцените последовательности.
А) ,
Решение. Вычислим данный интеграл: .
Пользуясь неравенством Коши для двух неотрицательных чисел, оценим выражение .
Прибавив к обеим частям данного неравенства – 2, получим оценку (an): .
Ответ: .
Б) .
Решение. Вычислим определённый интеграл:.
Тогда .
Используя неравенство Коши для трёх неотрицательных чисел, оценим (bn): .
Ответ: .
Вся трудность заданий А) и Б) заключается лишь в том, на сколько хорошо учащиеся помнят неравенство Коши.
IV. На координатной плоскости изобразите множество точек (область), удовлетворяющих следующим условиям.
А)
Решение. Преобразуем каждое неравенство системы по отдельности:
.
С учётом вычислений данная система примет вид:
На координатной плоскости заштриховываем множества точек, удовлетворяющих каждому из неравенств системы:
Закрашенная часть – искомая область.
Б) (данную конструкцию уместно предложить после изучения показательной функции).
Решение. Преобразуем каждое из неравенств системы по отдельности:
Тогда с учётом вычислений данная система примет вид:
. На координатной плоскости заштриховываем множества точек, удовлетворяющих каждому из неравенств системы:
Закрашенная часть – искомая область.
Сложность заданий А) и Б) заключается лишь в том, на сколько правильно учащиеся могут решать неравенства с двумя переменными.
V. При всех значениях параметра решить уравнения.
А)
Решение. Для начала вычислим предложенный интеграл:.
Тогда . Решая данное уравнение относительно параметра а, имеем:
1. если a = – 1: – 3 = 0, сл., решений нет; если a = 1: получим линейное уравнение 2x – 3 = 0, сл., ;
2. если
2.1. если , то решений нет;
2.2. если
Произведя отбор, запишем ответ.
Ответ: при :
при : решений нет
при a = 1: .
Б).
Решение. Вычислим предложенные определённые интегралы:
;
.
С учётом полученных вычислений имеем:
Во избежание ошибок при решении данного задания, необходимо заранее вспомнить с учащимися основные свойства тригонометрических функций (особенно области значений синуса и косинуса), а также правила решения отдельных задач с параметрами (это касается и задания А).
В конце нашей статьи хотим ещё раз заметить, что добиться максимальной работоспособности учащихся на уроке можно лишь при постановке таких проблемных ситуаций, которые будут создавать у школьников стремление их разрешить. На наш взгляд, одной из таких ситуаций будет использование предложенных конструкций, которые и осуществят творческий подход при обучении математике.