Цели урока:
- познакомить учащихся с понятие графика линейного уравнения с двумя переменными;
- формировать умение строить такие графики и находить по ним решения уравнений.
- воспитывать умение работать в группах, коллективе;
- развивать абстрактно-логическое мышление (умение анализировать, делать вывод, выделять главное и второстепенное, сравнивать и обобщать); развивать любознательность, наблюдательность, самостоятельность, интерес к предмету.
Оборудование: карточки для работы в группах, музыка для релаксации, ПК, презентация.
ХОД УРОКА
ЭТАП 1. Орг. момент.
Тема урока “График линейного уравнения с двумя переменными”. (Слайд 1).
Схема построения урока.
ЭТАП 2. Выяснения ожиданий и опасений “Дерево возможных вариантов”
, на этапе вхождения в тему.Перед началом выяснения ожиданий и опасений учитель объясняет, почему важно выяснить цели, ожидания и опасения. Учитель также участвует в процессе, озвучивая свои цели, ожидания и опасения.
Цель: выявить ожидания и опасения обучающихся на уроке.
Участники: все обучающиеся.
Необходимый материал: нарисованное дерево, на которое в конце урока будут наклеены листочки.
Проведение: Учитель предлагает учащимся на желтых листах написать, чего они ждут на уроке, а на красных чего опасаются. В конце урока учащиеся заклеивают цветными листочками: сбывшиеся ожидания и несбывшиеся опасения-желтыми и несбывшиеся ожидания и подтвердившиеся опасения – красными.
Оценка результата урока: желтое дерево – цели достигнуты, корни крепкие, крона густая, ждем плодов. Красное дерево выросло – выросло не то, что ожидали.
ЭТАП 3. Повторения пройденного материала (п. 15, п. 16).
1. У ч и т е л ь. Один из ученых сказал, что в настоящее время поверхность Луны лучше изучена, чем “внутренность” Земли. Однако известно, что каждые 100 м в Земле температура повышается на 3 °С. Писателей-фантастов часто привлекала тема путешествия к центру земного шара. Но возможно ли это? давайте посчитаем. Пусть температура почвы 0 °С. Какова будет температура Земли на глубине 100 м, 200 м, 500 м, 1 км, 30 км, 100 км, 1000 км? Будет ли эта зависимость функцией? Запишите ее формулу. (Слайд №2).
2. Вывод. Мы получили зависимость у = 0,03х.
3. Что вы можете сказать про эту зависимость?
– Это прямая пропорциональность;
– коэффициент к = 0,03;
– график расположен в первой и третьей координатной плоскости;
– график проходит через начало координат;
– для того, чтобы построить график этой линейной функции нужно найти координаты двух точек.
Дальше работа строится в соответствии с первым слайдом. Слайд №3 (Приложение 1). Презентация
На слайде в центре указано название темы, остальные секторы, пронумерованные, но пока не заполненные. Начиная с сектора 1, учитель вписывает в сектор название раздела темы, о котором сейчас пойдет обсуждение. Обучающимся предлагается обдумать, о каких аспектах темы пойдет речь. Затем ученики обсуждают тему, а в сектор вписываются наиболее существенные моменты первого раздела, ребята на местах заполняют таблицу №1. Закончив обсуждение материала по теме первого сектора, учитель вписывает во второй сектор название темы, ребята на местах заполняют таблицу №2, и так далее.
Таким образом, наглядно и в четко структурированном виде представляется весь материал урока, выделяются его ключевые моменты. Существующие на момент начала презентации “белые пятна” по данному уроку постепенно заполняются.
4. Работа в группах. (у каждого ученика есть карточка Приложение 2).
I группа. Заполнить таблицу №1.
I группа |
II группа |
Заполняем при работе в парах |
|
Прямая пропорциональность | |||
Общий вид | у= кх | ||
Примеры | у= 6х | ||
График | Представляет собой прямую, проходящую через начало координат | ||
Расположение графика функции в координатной плоскости | – если к> 0 график расположен в первой
и третьей координатных четвертях; – если к<0 – во второй и четвертой |
II группа. Заполнить таблицу таблица №2
I группа |
II группа |
Заполняем при работе в парах |
|
Линейная функция | |||
Общий вид | у = кх + в | ||
Примеры | у = 2х – 8 | ||
График | Есть прямая, параллельная прямой у = кх. Графиком является прямая. | ||
Расположение графика функции в координатной плоскости | – если к> 0, то угол наклона прямой к
оси х острый; – если к<0, то угол наклона прямой к оси х тупой. |
Вывод: после заполнения первого и второго секторов учитель показывает результат работы на электронной доске.(слайд №4) графиками этих функций является прямые, расположение которых зависит от к.
I группа | II группа | |
Прямая пропорциональность | Линейная функция | |
Общий вид | у= кх | у = кх + в |
Примеры | у= 6х | у = 2х – 8 |
График | Представляет собой прямую, проходящую через начало координат | Есть прямая, параллельная прямой у = кх. Графиком является прямая. |
Расположение графика функции в координатной плоскости | – если к> 0 график расположен в первой
и третьей координатных четвертях; – если к<0 – во второй и четвертой |
– если к> 0, то угол наклона прямой к
оси х острый; – если к<0, то угол наклона прямой к оси х тупой. |
ЭТАП 4. Физминутка. Слайд №5
ЭТАП 5. Изучение нового материала
.1. Ребята изучают самостоятельно п.41 “График линейного уравнения с двумя переменными”, и продолжают заполнять таблицу №1.
После заполнения и обсуждения полученных результатов в таблице, учитель делает вывод. (Слайд №6)
Вывод (слайд №7):
Делаем вывод, что график линейного уравнения с двумя переменными является прямая. Расположение графика линейного уравнения с двумя переменными рассматривается аналогично графикам прямой пропорциональности и линейной функции.
ЭТАП 6. Закрепление нового материала
(Приложение 3, Приложение 4)Работа в парах.
1. Вывод по первому заданию:
– в первой координатной четверти координаты х и у – положительные;
– во второй координатной четверти координата х – отрицательная, у – положительная;
– в третьей координатной четверти координата х – отрицательная, у – отрицательная;
– в четвертой координатной четверти координата х – положительная, у – отрицательная;
2. Вывод по второму заданию:
– слагаемое с х перенести в правую часть уравнения, изменив знак;
– поделить обе части уравнения на коэффициент перед у.
3. Вывод по третьему заданию:
– выразить у через х;
– найти координаты двух каких-либо точек прямой;
– отметить полученные точки в координатной плоскости;
– провести через точку прямую;
– эта прямая – график данного уравнения.
4. Вывод по четвертому заданию: для того, чтобы найти ординату (абсциссу) точки, нужно данное значение абсциссы (ординаты) подставить в уравнение, и решить полученное уравнение.
5. Вывод по пятому заданию: для того, чтобы найти ординату (абсциссу) точки, нужно данное значение абсциссы (ординаты) подставить в уравнение, и решить полученное уравнение.
6. Работа в группах. (Учитель выступает в роли консультанта)
№ 1
1. Принадлежит ли графику уравнения 2х – 5у = 1 точка:
а) А (3; 1); б) В (–1; –1); в) С (–2; –1)?
2. Постройте график линейного уравнения –4x + 3y = 6.
3. Известно, что график уравнения x + 2y = 2 проходит через точку А, абсцисса которой равна 2.
Найдите ординату этой точки.
№ 2
1. Принадлежит ли графику уравнения 3х – 4у = 2 точка:
а) А (3; 1); б) В (2; 1); в) С (–2; –2)?
2. Постройте график линейного уравнения –2x + 5y = 10.
3. Известно, что график уравнения y = x – 5 проходит через точку В, абсцисса которой равна 6. Найдите ординату этой точки.
Вывод: с какие задания вызвали затруднения, разобрать план решения этих заданий.
Этап 7. Домашнее задание:
№ 1049 (б, в, г); № 1050 (б, г); № 1148.Этап 8. Итог урока. (
Слайд № 8).– Что называется графиком уравнения с двумя переменными?
– Как построить график линейного уравнения с двумя переменными?
– Как определить, принадлежит ли точка А (2; –4) графику уравнения 3x + y = 2?
– Как найти абсциссу точки, принадлежащей графику какого-либо уравнения, если известна её ордината?
Этап
9. Рефлексия.Проведение: учитель предлагает вернуться к “Дереву возможных вариантов”. Учащиеся выбирают стикеры нужного цвета и наклеивают их на дерево. Если преобладающий цвет желтый, то цели урока достигнуты. Красный – есть над чем поработать
Литература:
- Алгебра. Учебник 7 класса общеобразовательных учреждений. Под редакцией С.А. теляковского. Рекомендовано министерством образования и науки Российской Федерации. 2010.
- Алгебра. 7 класс: поурочное планирование по учебнику Ю.Н. Макарычева (компакт – диск) издательство “Учитель”, 2011.
- www.moi-universitet.ru
- http://www.moyaradost.ru/uploads/posts/1206553355_trjam.jpg – медвежонок и ёжик
- http://еn.rian.ru/imaq
- http://qifanimation.ru
- http://u87772.87spyloq.com