Урок-игра «Химическое кафе» по химии в 8 классе по теме "Важнейшие классы неорганических веществ"

Цель урока: обобщить и повторить знания по теме: "Важнейшие классы неорганических веществ".

Тип урока: закрепления, обобщения и контроля знаний.

Вид урока: урок-игра "Химическое кафе".

Форма проведения: общественный смотр знаний учащихся с применением компьютера.

Методы: словесные (беседа), словесно-наглядные, постановка вопросов и ответы на вопросы, отработка практических навыков и умений при решении расчётных задач.

Задачи урока:

Образовательные:

обобщить и повторить основные понятия темы: строение и номенклатуру оксидов, кислот, оснований, солей;

проконтролировать умения и навыки учащихся при составлении уравнений химических реакций и расстановки коэффициентов, определение их типов;

продолжить формирование навыков решения задач с использованием понятия массовая доля;

показать связь изучаемой темы с жизнью.

Развивающие:

учебно-познавательные: выделять главное, обобщать, делать выводы, проводить самопроверку и взаимопроверку;

коммуникативные: навыков работы в группе, взаимодействия с другими людьми, умения отвечать на поставленный вопрос; умение вести записи в тетради; организовывать и анализировать собственную деятельность;

информационные: выделять существенные признаки химических реакций; оформлять и представлять результаты своей работы.

3. Воспитательные:

воспитывать сознательное отношение к учебному труду, развивать чувство ответственности и интерес к знаниям.

4. Здоровьесберегающие:

закрепить навыки безопасного обращения с реактивами.

Оборудование: Компьютер, презентация, пробирки, жетоны "ХИМИКУСЫ" с разными номиналами (приложение 2).

Реактивы: растворы карбоната натрия, соляной кислоты, сульфата натрия, хлорида бария,

Ход урока

Учитель.

Здравствуйте! Я рада приветствовать вас на необычном обобщающем уроке химии, для освоения которой вы приложили немало усилий. Сегодня мы присутствуем на открытие первого в нашей школе химического кафе для продвинутых химиков. Для чего я приглашаю вас пообедать в "Химическом кафе".

Цель урока: (презентация, слайд 1)

Сегодня нам предстоит большая работа, мы будем готовить "Химический обед". Для приготовления хорошего, вкусного обеда нам необходимы ваши умения и знания, поэтому нам предстоит проверить степень усвоения основных понятий пройденных тем: классы неорганических соединений, для этого мы приготовим салат "Ассорти химическое". Для приготовления первого блюда "Уха расчётная" необходимы умения при решении задач. "Химическая запеканка" будет состоять из химических уравнений, а для приготовления напитков вам потребуются ваши практические навыки и умения.

Учитель:

Для полноценной работы кафе необходима слаженная и опытная команда профессионалов во главе с шеф - поваром, так как в дальнейшем мы намерены нашим посетителям предлагать только самые вкусные химические блюда. Постарайтесь успеть все!

I. Закуска "Ассорти химическое" (презентация, слайд 2-3)

Учитель:

Для приготовления салата нам необходимо вспомнить определения классов неорганических соединений.

Внимание вопрос:

– Какие классы неорганических соединений мы изучили?

Учащиеся: называют классы неорганических соединений и дают им определения.

За каждую правильный ответ команда получает 10 баллов

Учитель:

Необходимо каждой команде приготовить химическое ассорти. Получите продуктовую (на слайде с химические формулы) корзину. Для приготовления химического ассорти необходимо выбрать один оксид, одну кислоту, основание и конечно посолить.

Задания для групп

Классифицировать вещества, назвать их.

Команды выполняют задания в своих "тарелках", в тетрадях.

Mg(OH)₂; MgCl₂, H₂SO₃; SiO₂; Ca(OH)₂; SO₃; Cr₂O₃; HCl; FeO; Al₂S₃; P₂O₅; Al₂(SO₄)₃; HF; H₃PO₄; Mn(OH)₂; CaO; Na₂CO₃; H₂SO₄; K₃PO₄; NaOH; KOH.

Защитить свое произведение (к доске выходит представитель команды и выписывает формулы, даёт им название).

оксиды	кислоты	соли	основания
SiO ₂ оксид кремния	H ₂ SO ₃ сернистая кислота	MgCl ₂ хлорид магния	Mg(OH) ₂ гидроксид магния
FeO оксид железа (II)	HCl хлороводородная кислота	Al_2S_3 сульфид алюминия	Са(ОН) ₂ гидроксид кальция
SO ₃ оксид серы (VI)	Н фтороводородная	Al ₂ (SO ₄) ₃ сульфат алюминия	Мп(ОН) ₂ гидроксид марганца

P ₂ O ₅ оксид фосфора (V)	Н ₃ РО ₄ фосфорная кислота	Na ₂ CO ₃ карбонат натрия	NaOH гидроксид натрия
СаО оксид кальция	H ₂ SO ₄ серная кислота	К ₃ РО ₄ фосфат калия	КОН гидроксид калия

Выигрывает в этом конкурсе та команда, в тарелке которой окажется больше компонентов.

За каждую правильно выписанную и названную формулу команда получает 10 баллов

Учитель:

У нас одно блюдо уже готово. Перейдем к горячим блюдам, которым будет "Уха расчётная", но для того чтобы его приготовить необходимо вспомнить состав ухи.

Учащиеся: называют ингредиенты, входящие в состав ухи и делают вывод, что это смесь, поэтому, что бы уха получилась вкусной, нам необходимо рассчитать массы ингредиентов входящих в состав ухи.

Вспоминают формулу для расчета массовой доли вещества в смеси: m (в-ва)= $W \cdot m(cmecu)$

100%

II. Задача (презентация, слайд 4-5)

Рецепт ухи

Для приготовления 5 килограммов ухи нам необходимо взять:

20% рыбы 1 группа;

14 % картофеля 2 группа;

2% моркови 3 группа;

2% лука 4 группа;

корень петрушки (по желанию);

перец горошком (5-7 штук);

лавровый лист (3-4 штуки);

соль, перец, зелень по вкусу.

Задания для групп:

Сколько грамм каждого ингредиенты необходимо взять для приготовления ухи?

1группа: определить массу рыбы;

2группа: определить массу картофеля;

Згруппа: определить массу моркови;

4 группа: определить массу лука.

Взаимопроверка групп по инструкционным картам (приложение 1).

За правильно решённую задачу команда получает 30 баллов.

Дополнительный вопрос: сколько литров воды вы возьмёте? 5-1,900=3,100 кг.

Команда, давшая первой верный ответ зарабатывает 10 баллов.

Учитель:

"Уха расчётная" получилась замечательной, вкусной и питательной.

А теперь физкультминутка (презентация, слайд 6)

Поднимает руки класс – это раз.

Повернулась голова – это два.

Руки вниз – вперед смотри – это три.

Руки в стороны, пошире, развернули на четыре.

С силой их к плечам прижать.

И немного повращать – это пять.

А на шесть – в ладоши хлопнуть.

И на семь – ногою топнуть.

А на восемь – потянуться.

И на девять – улыбнуться.

Что ж заряд хороший есть?

Можно нам теперь и сесть.

Учитель:

Переходим к третьему блюду и название его "Химическая запеканка". Начинкой запеканки будут у нас уравнения реакций, но что бы их использовать вы должны, закончить уравнения реакций, расставить коэффициенты и указать их тип.

III. "Химическая запеканка" (презентация, слайд 7-8).

Задание для групп: закончить уравнения реакций и указать их тип.

 $H_2O = ? + ?;$

Zn + HCl = ? + ?;

CuO + HCl = ? + ?;

 $Na + O_2 = ?$

 $Cu(OH)_2^t = ? + ?$

Самооценка: каждый участник команды должен выполнить по одному уравнению. За правильно составленное уравнение и определение его типа получает 10 XИМИКУСОВ, итого 50 ХИМИКУСОВ.

Правильное решение проверяем по слайду.

 $2 H_2 O = 2H_2 + O_2 -$ разложения.

 $Zn + 2HCl = ZnCl_2 + H_2 -$ замещения.

 $CuO+ 2HCl = CuCl_2+ H_2O -$ обмена.

 $4Na + O_2 = 2Na_2O -$ соединения.

 $Cu(OH)_2 = CuO + H_2O -$ разложения.

IV. "Необычные напитки" (презентация, слайд 9-10)

Учитель:

Конечно же, никакой обед не обходится без напитков. Мы с вами сейчас и приготовим. А готовить мы будим "газированный напиток" и "молочный коктейль". Для этого нам необходимо вспомнить правила техники безопасности в химическом кафе.

Внимание вопрос:

Какие правила безопасности необходимо соблюдать при работе с химическими вешествами?

Учащиеся: называют правила техники безопасности.

За каждое правило команда получает 10 баллов.

Задания для групп

1-2 группа: получить "газированную воду": $Na_2CO_3 + HCl$.

3-4 группа: получить "молоко": $Na_2 SO_4 + BaCl_2$.

Примечание: при проведении л/о обращать внимание на технику безопасности при проведении химического эксперимента

Выигрывает команда, которая быстрее приготовит напиток и сумеет защитить его.

V. Подведение итогов урока

Вот и подошёл к концу наш обед. Вы славно потрудились! Кто стал лучшей бригадой поваров?

Награждение. Лучшими профессионалами в "Химическом кафе" стали: (председатель жюри вручает сертификаты).

Учитель:

– Если вы не стали профессионалами сегодня, и что-то у вас не получилось, так как хотелось, не огорчайтесь, изучение химии продолжается!

Рефлексия

Приложение 1

1 группа

Дано:
$$m (смеси) = 5 кг w = 20\%$$

Найти:

т (рыба) - ?

Решение:

m (рыба) =
$$-\frac{W^{*m (смеси)}}{100\%} = \frac{5 \text{кг} * 20\%}{100\%} = 1 \text{ кг}$$

Ответ: рыбы необходимо взять 1 килограмм.

2 группа

Дано:

m (смеси) = 5 кг w = 14%

Найти:

т (картофель) -?

Решение:

m (картофеля) =-
$$\frac{W^{*\text{ m (смеси)}}}{100\%} = \frac{5\kappa\Gamma * 14\%}{100\%} = 0,7 \ \kappa\Gamma$$

Ответ: картофеля необходимо взять 0,7 килограмм.

3 группа

Дано:

m (смеси) = 5 кг w = 2%

Решение:

m (моркови) =-
$$\frac{W * m \text{ (смеси)}}{100\%}$$
 = $\frac{5 \text{к} \Gamma * 2\%}{100\%}$ = 0,1 кг

Найти:

т (морковь) - ? Ответ: моркови необходимо взять 0,1 килограмм.

4 группа

Дано:
$$m \text{ (смеси)} = 5 \text{ кг}$$
 $w = 2\%$ Найти:

Решение:

$$m (\pi y \kappa) = -\frac{W^{*m (cмеси)}}{100\%} = \frac{5\kappa \Gamma * 2\%}{100\%} = 0,1 \ \kappa \Gamma$$

Ответ: лука необходимо взять 0,1 килограмм.

Заключение

т (лук) - ?

В последние годы интерес к нетрадиционным урокам по химии в школе значимо усилился. Это связано с различными преобразованиями, происходящими в нашей стране, которые создали определенные условия для перестроечных процессов в сфере образования создания новых типов уроков, активного внедрения в уроки различных педагогических методов и способов развития интереса у детей школьного возраста, авторских программ и учебников.

Организация нетрадиционного урока предполагает создание условий для овладения школьниками приемами умственной деятельности. Овладение ими не только обеспечивает новый уровень усвоения, но и дает существенные сдвиги в умственном развитии.

Итак, эффективность учебного процесса во многом зависит от умения учителя правильно организовать урок и грамотно выбрать ту или иную форму проведения занятия. Нетрадиционные формы проведения уроков дают возможность не только поднять интерес учащихся к изучаемому предмету химии, но и развивать их творческую самостоятельность, обучать работе с различными источниками знаний. Такие формы проведения занятий "снимают" традиционность урока, оживляют мысль. Однако необходимо отметить, что слишком частое обращение к подобным формам организации учебного процесса нецелесообразно, так как нетрадиционные уроки могут быстро стать традиционными, что в конечном счете, приведет к падению у учащихся интереса к предмету.

Список использованной литературы:

- 1. В.А. Крутецкий. Психология.- М.,1986
- 2. Бажович Л.И. Проблема развития мотивационной сферы ребенка. Изучение мотивации поведения детей и подростков. М; 1978.
- 3. Занкова Л.В. Обучение и развитие. М, 1975.
- 4. Л.М.Фридман, И.Ю.Кулагина. Психологический справочник учителя.- М., 1971.
- 5. Пономарев Я.А. Психология творчества и педагогика.- М., 1976.
- 6. Поддьков Н.Н. Педагогика. М.,1977.
- 7. Интернет-ресуры.