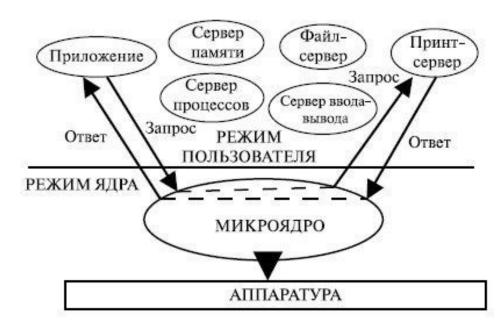

Реализация системного вызова в ОС с микроядерной архитектурой

Однозначного решения о переносе в пользовательский режим тех или иных системных функций не существует. В общем случае как пользовательские приложения оформляются многие менеджеры ресурсов.

По определению, основным назначением такого приложения является обслуживание запросов других приложений (создание процесса, выделение памяти, проверка прав доступа и т.д.). Поэтому менеджеры ресурсов, вынесенные в пользовательский режим, называются *серверами* ОС. Одной из главных задач микроядра является поддержка взаимодействия серверов.



Клиент (прикладная программа либо другой компонент ОС) посылает соответствующему серверу сообщение-запрос на выполнение некоторой функции.

Непосредственная передача этого сообщения серверу невозможна, так как каждое приложение работает в своем адресном пространстве. В качестве посредника выступает микроядро, выполняющееся в привилегированном режиме и имеющее доступ к адресным пространствам всех приложений. Микроядро передает сообщение нужному серверу, сервер выполняет запрошенную операцию и результат, снова через посредство микроядра, возвращается клиенту с помощью другого сообщения.

Такая схема обработки запроса соответствует модели клиент-сервер, где микроядро выполняет роль транспортных средств.

Схематично механизм обращений к функциям ОС, оформленным в виде серверов:

Преимущества и недостатки микроядерной архитектуры

OC, основанные на концепции микроядра, в высокой степени удовлетворяют большинству требований, предъявляемых к современным ОС:

- единообразные интерфейсы;
- простота расширяемости;
- высокая гибкость;
- возможность переносимости;
- высокая надежность;
- поддержка распределенных систем;
- поддержка объектно-ориентированных ОС.

Основным недостатком микроядерной архитектуры является снижение производительности по сравнению с классическим вариантом. Так, при классической организации выполнение системного вызова требует двух переключений режимов «привилегированный – пользовательский», а при микроядерной – четырех. При обращении к часто используемым функциям

работа приложений существенно замедляется. По этой причине микроядерный подход не получил широкого распространения.

Обработка системного вызова в микроядерной архитектуре

Схема смены режимов при выполнении системного вызова в ОС с микроядерной архитектурой выглядит, как показано на рисукнке. Из рисунка ясно, что выполнение системного вызова сопровождается четырьмя переключениями режимов (4 t), в то время как в классической архитектуре – двумя.

Следовательно, производительность ОС с микроядерной архитектурой при прочих равных условиях будет ниже, чем у ОС с классическим ядром.

Обработка системного вызова в классической архитектуре

Повышение устойчивости ОС обеспечивается переходом ядра в привилегированный режим. При этом происходит некоторое замедление выполнения системных вызовов. *Системный вызов* привилегированного ядра инициирует переключение процессора из пользовательского режима в привилегированный, а при возврате к приложению – обратное переключение.

Соотношение классической и микроядерной архитектуры

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ

- 1. Астапчук, В. А. Корпоративные информационные системы: требования при проектировании: учебное пособие для вузов / В. А. Астапчук, П. В. Терещенко. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 113 с. (Высшее образование). ISBN 978-5-534-08546-4. URL: https://urait.ru/bcode/472111
- 2. Гостев, И. М. Операционные системы: учебник и практикум для среднего профессионального образования / И. М. Гостев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 164 с. (Профессиональное образование). ISBN 978-5-534-04951-0. URL: https://urait.ru/bcode/472333
- 3. Гостев, И. М. Операционные системы: учебник и практикум для вузов / И. М. Гостев. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 164 с. (Высшее образование). ISBN 978-5-534-04520-8. URL: https://urait.ru/bcode/470010
- 4. Нестеров, С. А. Базы данных: учебник и практикум для вузов / С. А. Нестеров. Москва : Издательство Юрайт, 2021. 230 с. (Высшее образование). ISBN 978-5-534-00874-6. URL: https://urait.ru/bcode/469516
- 5. Попов И. И.Операционные системы, среды и оболочки : учебное пособие / Т.Л. Партыка, И.И. Попов. 5-е изд., перераб. и доп. М. : ФОРУМ : ИНФРА-М, 2022. 560 с.
- 6. Рудаков, А. В. Операционные системы и среды : учебник / Рудаков А.В. Москва : КУРС: ИНФРА-М, 2021. 304 с. (Среднее профессиональное образование). ISBN 978-5-16-106301-9
- 7. Рудаков А. В.Операционные системы и среды : учебник / Рудаков А.В. М.: КУРС: ИНФРА-М, 2022. 304 с.

	«КОЛЛЕДЖ СВЯЗИ №54» имени п.м. вострухина
ТЕСТ №1 по ОП.01	1. Операционные системы и среды
Студента группы _	
ФИО	
Дата	<u></u>
	TECT
1. Дайте определе	ние Архитектуры операционной системы
-	
2. Выберите один	правильный ответ:

- Модули ядра являются:
 - А. Резидентными
 - В. Временными
 - С. Транзитными
- Определение Транзитные означает:
 - А. загружаются в оперативную память только на время выполнения.
 - В. постоянно находятся в оперативной памяти
 - С. архивируются после завершения использования
- Привилегированный режим:
 - А. для работы ОС или ее частей (процессор может выполнять все возможные команды).
 - В. для работы приложений
 - С. для программ, решающие отдельные задачи управления и сопровождения компьютерной системы

3. Дополните предложение:

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

5. Дополните фразу: Для работы приложений (недоступны команды процессора, связанные с управлением аппаратным обеспечением, защитой оперативной памят переключением режимов работы процессора) используется режим.					
с управлением аппаратным обеспечением, защитой оперативной памят переключением режимов работы процессора) используетс режим.	5. Дополните фр	азу:			
переключением режимов работы процессора) используетс	Для работы п	риложений (н	недоступны	команды процес	сора, связанны
режим.	с управлением ап	іпаратным об	беспечением	і, защитой опера	ативной памяти
	переключением	режимов	работы	процессора)	используется
			режи	М.	
6. Основной недостаток монолитной архитектуры:	6. Основной неде	остаток моно	олитной арх	хитектуры:	
	7. Соотнесите п	OH GIM H.G.			

I.	Утилиты	А. загрузчики, отладчики, текстовые или графические редакторы
II.	Библиотеки процедур различного назначения для разработки приложений	Б. калькулятор, некоторые игры
III.	Программы, предоставляющие дополнительные услуги	В. математические функции, функции ввода-вывода
IV.	Системные обрабатывающие программы	Г. программы, решающие отдельные задачи управления и сопровождения компьютерной системы (сжатие дисков, их проверка, дефрагментация; архивирование, сбор статистики и т.д.);

8. Какие виды архитектур суп	цествуют?		
1.			
2.			
3.			
9. Дополните фразу:			
В монолитном ядре реализуют	пся все основные	функции	операционног
системы, и оно является, по	<i>cymu</i> ,		программой
представляющей собой совокупи	ность процедур - б	ольшой на	бор сервисны:
функций.			

10. Архитектура ОС, основанная на привилегированном ядре и приложениях пользовательского режима является:

- А. Классической
- В. Монолитной
- С. Полилитной
- D. Стандартной

11. Нарисуйте многослойную архитектуру и подпишите ее части (в общем виде):

12. Главная идея микроядра:

- А. Вспомогательные модули являются транзитными (загружаются в оперативную память только на время выполнения)
- А. Группировка модулей в менеджеры обычно осуществляется по функциям основных подсистем ОС
- В. Взаимодействует непосредственно с приложениями и системными утилитами, образуя прикладной программный интерфейс ОС
- С. минимизировать само ядро, вынести как можно функциональности в режим пользователя (т.е. исполнять эту функциональность в виде обычных процессов)

Тема 2. Архитектура операционной системы

Определение архитектуры ОС

Архитектура операционной системы • структурная и функциональная организация ОС на основе некоторой совокупности программных модулей

Какой-либо единой унифицированной архитектуры ОС не существует, но известны универсальные подходы к структурированию ОС.

Структура операционной системы

Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы:

ядро вспомогательные модули.

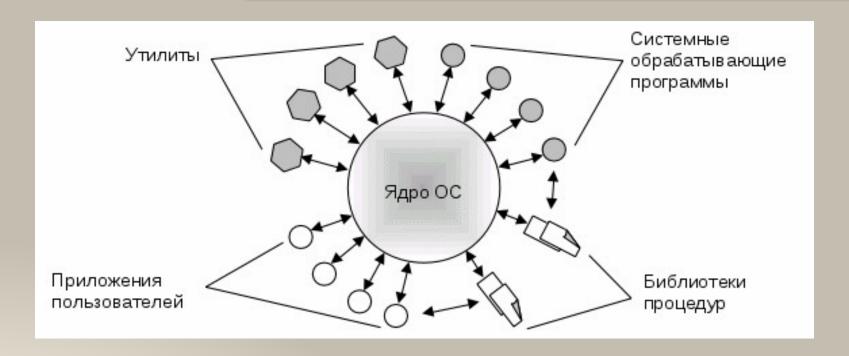
ЯДРО

Ядро

• ключевой, основной компонент операционной системы, именно в нем реализуется большая часть функциональности ОС

Основные функции:

- управление процессами;
- управление памятью;
- управление вводом-выводом и файловая система;
- интерфейс прикладного программирования для поддержки обращений к ядру из приложений.

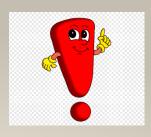

Резидентные

• Для обеспечения высокой скорости работы ОС модули ядра (все или большая часть), являются *резидентными*, т.е. постоянно находятся в оперативной памяти.

Вспомогательные модули

Менее обязательные Транзитные

- Выполняют полезные, но менее обязательные функции.
- Обращаются к функциям ядра посредством системных вызовов.
- Вспомогательные модули, в отличие от модулей ядра, являются *транзитными* загружаются в оперативную память только на время выполнения.

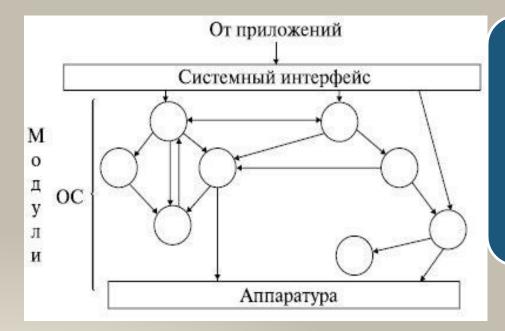


Виды вспомогательных модулей

- Утилиты программы, решающие отдельные задачи управления и сопровождения компьютерной системы (сжатие дисков, их проверка, дефрагментация; архивирование, сбор статистики и т.д.);
- Системные обрабатывающие программы (загрузчики, отладчики, текстовые или графические редакторы);
- Библиотеки процедур различного назначения для разработки приложений (математические функции, функции ввода-вывода и т.д.);
- Программы, предоставляющие дополнительные услуги (калькулятор, некоторые игры).

Привилегированный и пользовательский режим

- Пользовательский режим (user mode) для работы приложений (недоступны команды процессора, связанные с управлением аппаратным обеспечением, защитой оперативной памяти, переключением режимов работы процессора).
- Привилегированный режим, он же режим ядра (kernel mode) для работы ОС или ее частей (процессор может выполнять все возможные команды).


Понятие «ядро» и «привилегированный режим» тесно связаны

Виды ЯДРА ОС

Монолитное ядро

- В монолитном ядре реализуются все основные функции операционной системы, и оно является, по сути, единой программой, представляющей собой совокупность процедур большой набор сервисных функций.
- **Монолит** все вместе, все библиотеки, сервисные функции в одном ядре.

Монолитное ядро содержит следующие базовые элементы:

- Планирование процессов
- Управление файловой системой
- Сетевое взаимодействие
- Драйверы устройств
- Управление памятью

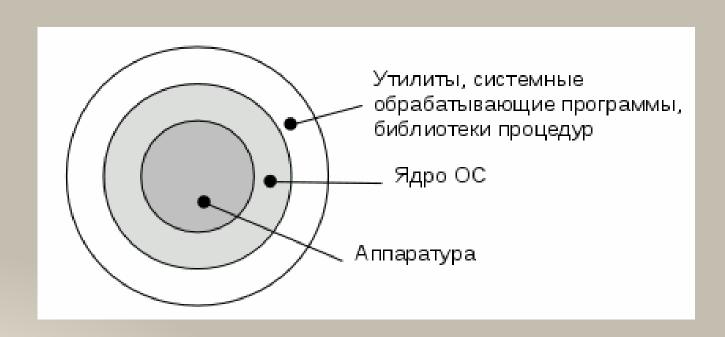
Монолитное ядро + и -

Преимущества:

Производительность — в виду того, что количество переключений из контекста режима пользователя в режим ядра сведено к минимуму.

Недостатки:

Неустойчивость к сбоям – так как все базовые элементы и их работа выполняются в режиме ядра, и если хотя бы в одном модуле или блоке ядра произойдет какойлибо сбой, то ему будет подвержена вся ОС (все ядро), вариантов других нет, закончится все перезапуском ОС.


Архитектура ОС, основанная на привилегированном ядре и приложениях пользовательского режима является КЛАССИЧЕСКОЙ = МНОГОСЛОЙНЫЙ подход

• Универсальный и эффективный способ декомпозиции сложных систем, базирующийся на следующих положениях:

- Система представляется как иерархия слоев.
- Функции нижележащего слоя являются примитивами для построения более сложных функций вышележащего слоя.
- Взаимодействие слоев осуществляется через посредство функций межслойного интерфейса.
- Отдельный модуль может либо выполнить свою работу самостоятельно, либо обратиться к другому модулю своего слоя, либо обратиться к нижележащему слою через межслойный интерфейс.

Архитектура ОС, основанная на *привилегированном ядре* и *приложениях пользовательского режима* является КЛАССИЧЕСКОЙ = МНОГОСЛОЙНЫЙ подход

- При таком подходе разработка системы осуществляется сверху вниз, от целей системы к их реализации.
- Сначала определяются функции слоев и межслойные интерфейсы, задающие общую структуру системы, а затем разрабатываются модули внутри слоев.

Многослойная структура ядра ОС

• Многослойный подход применим и к структуре ядра как сложного многофункционального комплекса

Многослойная структура ядра ОС

- Средства аппаратной поддержки ОС аппаратные средства, прямо участвующие в организации вычислительных процессов: средства поддержки привилегированного режима, система прерываний, переключение контекстов процессов, трансляция адресов, защита памяти и т.п.
- Машино-зависимые модули программные модули, в которых отображается специфика аппаратной платформы компьютера. В идеале этот слой полностью экранирует* вышележащие слои от особенностей аппаратуры, т.е. позволяет делать модули вышележащих слоев машинно-независимыми.
- На уровне НАL работа с устройством определенного типа (накопитель, видеоплата, мышь и т.п.) всегда описывается при помощи одного и того же заранее определенного набора функций. В случае, если устройство имеет иной набор функций (например, устаревший 3d-ускоритель может не поддерживать многих современных функций), драйвер обязан эмулировать* стандартные функции с тем, чтобы ОС могла не заботиться о том, какое конкретно устройство установлено.

^{*} Экранировать - предохранять от посторонних воздействий

^{*} Эмуляция — один из способов электронного архивирования устаревающих вычислительных систем.

Многослойная структура ядра ОС

- Базовые механизмы ядра. Модули этого слоя не принимают решений о распределении ресурсов, а только отрабатывают принятые на более высоком уровне решения. Выполняются наиболее примитивные операции ядра: программное переключение контекстов процессов, перемещение страниц между памятью и диском, диспетчеризация прерываний и т.п.
- Менеджеры ресурсов. Модули этого уровня реализуют управление основными ресурсами системы. Группировка модулей в менеджеры обычно осуществляется по функциям основных подсистем ОС: выделяются менеджеры процессов, ввода-вывода и файловой системы (могут быть объединены), оперативной памяти.
- *Интерфейс системных вызовов*. Взаимодействует непосредственно с приложениями и системными утилитами, образуя прикладной программный интерфейс ОС (API).

РЕЗЮМЕ Многослойной / классической / многоуровневой архитектуры

- **Р** Все компоненты ОС разделяются на модули, выполняющие основные функции ОС (ядро), и модули, выполняющие вспомогательные функции ОС.
- **Р** Вспомогательные модули оформляются либо в виде приложений, либо в виде библиотек процедур и функций.
- **Р** Вспомогательные модули являются транзитными (загружаются в оперативную память только на время выполнения). Модули ядра резидентными (постоянно находящиеся в оперативной памяти).
- **Р** Устойчивость ОС повышается путем выполнения функций ядра в привилегированном режиме, а вспомогательных модулей ОС и пользовательских приложений в пользовательском.

Многослойная классическая многоуровневая *архитектура* ОС **не лишена своих проблем.**

- 1. Дело в том, что значительные изменения одного из уровней могут иметь <u>труд н о пред види мое влияние</u> на смежные уровни.
- 2. Кроме того, многочисленные взаимодействия между соседними уровнями усложняют обеспечение безопа сности.

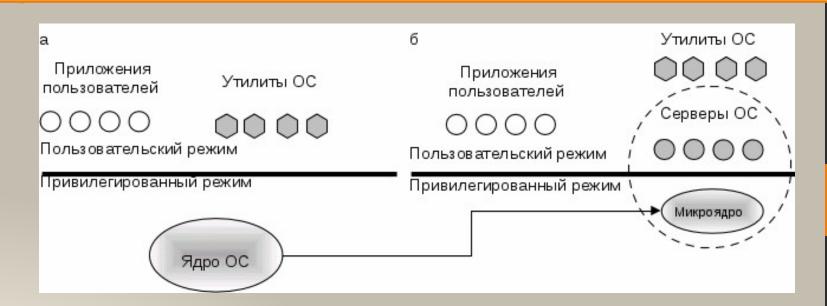
Поэтому, как *альтернатива* классическому варианту архитектуры ОС, часто используется *МИКРОЯДЕРНАЯ* архитектура ОС.

МИКРОЯДРО / МИКРОЯДЕРНАЯ архитектура

Микроядро

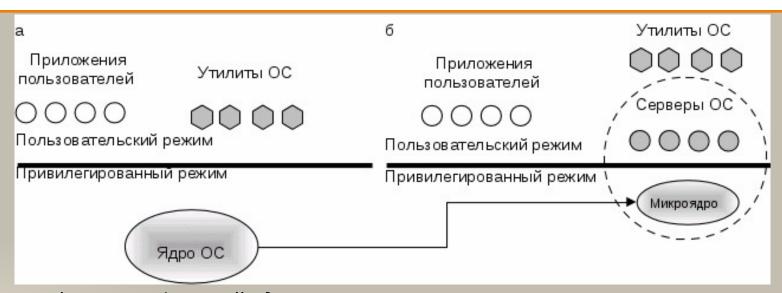
• ядро, содержащее только самые необходимые функции.

Идея:


• минимизировать само ядро, вынести как можно функциональности в режим пользователя (т.е. исполнять эту функциональность в виде обычных процессов).

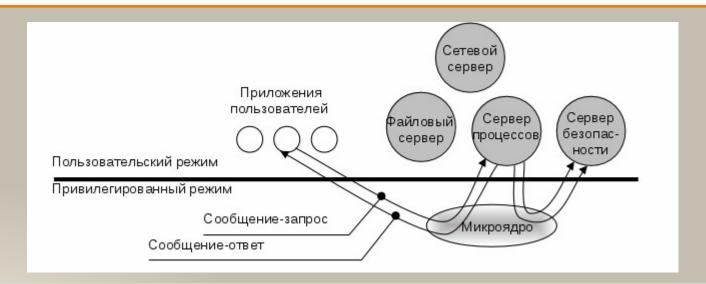
Многие сервисы становятся пользовательскими процессами:

- Драйверы устройств,
- Файловые системы,
- Менеджер виртуальной памяти,
- Оконные системы графического интерфейса пользователя,
- Службы безопасности
- Данный подход популяризован ядром МАСН («МАК»)
- На основе MACH сделаны, среди прочих, Mac OSX (комп.Apple), GNUHurd.


Суть МИКРОЯДЕРНОЙ архитектура

- В привилегированном режиме остается работать только очень небольшая часть ОС, называемая микроядром.
- Микроядро защищено от остальных частей ОС и приложений. В его состав входят машинно-зависимые модули, а также модули, выполняющие базовые механизмы обычного ядра.
- Все остальные более высокоуровневые функции ядра оформляются как модули, работающие в пользовательском режиме. Так, менеджеры ресурсов, являющиеся неотъемлемой частью обычного ядра, становятся "периферийными" модулями, работающими в пользовательском режиме.
- Таким образом, в архитектуре с микроядром традиционное расположение уровней *по* вертикали заменяется горизонтальным.
- Между собой они взаимодействуют как равноправные партнеры с помощью обмена сообщениями, которые передаются через микроядро.

Концепция МИКРОЯДЕРНОЙ архитектуры


- В привилегированном режиме работает только небольшая часть ОС микроядро, защищенное от остальных частей ОС приложений.
- В состав функций микроядра включаются те функции ОС, которые трудно или невозможно выполнить в пространстве пользователя это функции слоя базовых механизмов обычного ядра и ниже.
- Остальные, высокоуровневые функции ядра оформляются в виде приложений, работающих в пользовательском режиме. Соотношение классической и микроядерной архитектур приведено на ниже

(Перенос функций ядра в пользовательское пространство: а – классическая архитектура, б – микроядерная архитектура)

Реализация системного вызова в ОС с микроядерной архитектурой

- Однозначного решения о переносе в пользовательский режим тех или иных системных функций не существует. В общем случае как пользовательские приложения оформляются многие менеджеры ресурсов.
- По определению, основным назначением такого приложения является обслуживание запросов других приложений (создание процесса, выделение памяти, проверка прав доступа и т.д.). Поэтому менеджеры ресурсов, вынесенные в пользовательский режим, называются серверами ОС. Одной из главных задач микроядра является поддержка взаимодействия серверов.

Схема обработки запроса соответствует модели КЛИЕНТ-СЕРВЕР, где микроядро выполняет роль транспортных средств.

• Клиент (прикладная программа либо другой компонент ОС) посылает соответствующему серверу сообщение-запрос на выполнение некоторой функции

- Непосредственная передача этого сообщения серверу невозможна, так как каждое приложение работает в своем адресном пространстве. В качестве посредника выступает микроядро, выполняющееся в привилегированном режиме и имеющее доступ к адресным пространствам всех приложений.
- Микроядро передает сообщение нужному серверу, сервер выполняет запрошенную операцию и результат, снова через посредство микроядра, возвращается клиенту с помощью другого сообщения.

Схематично механизм обращений к функциям ОС, оформленным в виде серверов



Микроядерная архитектура + и -

Преимущества:	Недостатки:	
ОС, основанные на концепции	Основным недостатком	
микроядра, в высокой степени	микроядерной архитектуры	
удовлетворяют большинству	является снижение	
требований, предъявляемых к	производительности по	
современным ОС:	сравнению с классическим	
• единообразные интерфейсы;	вариантом. Так, при	
• простота расширяемости;	классической организации	
• высокая гибкость;	выполнение системного вызова	
• возможность переносимости;	требует двух переключений	
• высокая надежность;	режимов «привилегированный –	
• поддержка распределенных	пользовательский», а при	
систем;	микроядерной – четырех. При	
• поддержка объектно-	обращении к часто	
ориентированных ОС.	используемым функциям работа	
	приложений существенно	
	замедляется.	

Обработка системного вызова в микроядерной архитектуре

• Схема смены режимов при выполнении системного вызова в ОС с микроядерной архитектурой выглядит, как показано на рисукнке. Из рисунка ясно, что выполнение системного вызова сопровождается четырьмя переключениями режимов

Обработка системного вызова в классической архитектуре

• Повышение устойчивости ОС обеспечивается переходом ядра в привилегированный режим. При этом происходит некоторое замедление выполнения системных вызовов. Системный вызов привилегированного ядра инициирует переключение процессора из пользовательского режима в привилегированный, а при возврате к приложению — обратное переключение.

Соотношение классической и микроядерной архитектуры

