Цели:
- углубление и расширение знаний по предмету;
- развитие математического кругозора, логического мышления;
- стимулирование устойчивого интереса к математике.
Задачи:
- развитие математических способностей и логического мышления;
- развитие познавательного интереса, умение применять полученные знания в нестандартных задачах.
Каждый год в школе проводится олимпиада по математике. Задачи, которые предлагают на олимпиадах разного уровня, чаще всего являются нестандартными. Для их решения нужно уметь использовать материал школьной программы в нестандартных, непривычных для ребенка ситуациях. Внеурочная деятельность по предмету позволяет учителю решать этот вопрос. Чем раньше удается сформировать у учащихся интерес к предмету, тем глубже будут знания. А радость от полученного решения трудной нестандартной задачи будет велика.
Среди тем, предлагаемых для внеклассной работы с учащимися 5-6 классов, есть задачи, которые можно свести к уравнению с несколькими переменными. В них число переменных меньше, чем число уравнений. Это вызывает определенную трудность. С другой стороны, учащиеся в 5-6 классе не владеют в нужной мере методами решения уравнений и систем. Обычно решению помогают некоторые дополнительные условия, сформулированные в задаче. Речь идет о заданиях, в которых надо решить уравнение в целых или натуральных числах.
В этой работе мы рассмотрим задачи для внеклассной работы с учащимися 5-6 классов, которые сводятся к уравнению с двумя переменными (неопределенные уравнения) и методы их решения.
1. Использование понятия НОД (наибольший общий делитель)
Задача. Ребята получили на новогодней елке одинаковые подарки. Во всех подарках вместе 123 апельсина и 82 яблока. Сколько ребят присутствовало на елке? Сколько яблок и апельсинов было в каждом подарке?
Решение. Все подарки одинаковые, т.е. в каждом одинаковое число апельсинов и яблок. Надо найти наибольшее целое число, на которое делятся числа 123 и 82. 123 = 3 . 41, 82 = 2 . 41. Получаем, что ребят на елке было 41 человек. В каждом подарке было: 123 : 41 = 3 апельсина и 82 : 41 = 2 яблока.
Ответ: 41 ребенок, 2 яблока и 3 апельсина
2. Признаки делимости при решении задач
Задача. Можно ли разменять 100 р., имея рублевые, трехрублевые и пятирублевые купюры, так, чтобы всего было 29 купюр?
Решение. Пусть в размене участвуют х рублевых, у трехрублевых и z пятирублевых купюр, х + у + z =29, х + 3у + 5z = 100. Записав это равенство в виде (х + у + z) + (2у + 4z) = 100, заключаем, что х + у + z = 29 – четное число, т.к. числа 100 и 2у + 4z – четные числа. Следовательно, нельзя разменять 100 р с помощью 29 купюр достоинством в 1р, 3 р, 5р.
Задача. Решите в натуральных числах х и у уравнение 22х + 13у = 1000.
Решение. Из уравнения видно, что число у должно быть четным. Кроме того, так как 22х + 13у > 13у, то 1000 > 13у, > у, 76 > у. Следовательно, 2 < у < 76.
Для того чтобы не перебирать все четные числа от 2 до 76, используем признак делимости на 11.
Правило: Число делится на 11, если сумма цифр занимающих нечетные места, либо равна сумме цифр, занимающих четные места, либо отличается от нее на число, делящееся на 11.
Преобразуем уравнение: 22х + 11у + 2у = 1001 – 1, 22х + 11у + (2у + 1) = 1001.
Так как 22х, 11у, 1001 делятся на 11, то и 2у + 1 делится на 11.
Первое значение у, при котором 2у + 1 кратно 11, есть у = 5, но оно нечетно.
Следующее такое значение у больше 5 на 11, т.е. у = 16. Проверим: 2 . 16 + 1 = 33, а 33 делится на 11. Очередное значение у больше 16 не на 11, а на 22. Значит, у = 38; далее у = 38 + 22 = 60. Для каждого из значений у = 16, 38, 60 вычислим соответствующее значение х.
Ответ: (10;60), (23;38), (36;16).
3. Свойства уравнений
Учащиеся 5 класса и большую часть 6 класса не владеют правилом переноса слагаемых из одной части уравнения в другую. Это осложняет решения задачи, сводящейся к уравнению вида ах + ву = с. Поэтому разумно на примере чашечных весов познакомить детей с некоторыми свойствами уравнений.
Свойство: Если к обеим частям уравнения прибавить или вычесть одно и то же число, то полученное в результате этого новое уравнение имеет те же и только те же решения, что и исходное уравнение.
Задача. В клетке находятся фазаны и кролики. Известно, что у них 35 голов и 94 ноги. Сколько в клетке фазанов и сколько кроликов?
Решение. Пусть в клетке х фазанов и у кроликов. Тогда общее число зверей х + у= 35. У фазанов по 2 ноги, т.е. 2х ног у всех фазанов. У кроликов по 4 лапы, т.е. 4у лап у всех кроликов. Найдем общее число лап 2х + 4у = 94.
Попробуем решить это уравнение, используя знание материала 5 класса.
Запишем уравнение 2х + 4у = 94 в виде: 2х + 2у + 2у = 94, 2(х + у) + 2у = 94. Воспользуемся заменой выражения х + у на тождественно равное х + у = 35. Получим: 2 . 35 + 2у = 94, 70 + 2у = 94, 2у = 24, у = 12, тогда х = 23.
Ответ: было 23 фазана и 12 кроликов.
4. Метод перебора
Этот метод применяется в задачах, при решении которых, приходится перебирать различные варианты. Применяется он в основном тогда, когда искомые величины могут быть только целыми числами, а множество всех таких значений конечно.
Нередко в задачах используется свойство делимости целых чисел, а метод перебора выступает в виде составной части решения.
Задача. Дети собирали макулатуру. Каждый мальчик собрал по 21 кг, а каждая девочка по 15 кг. Всего дети собрали 174 кг. Сколько мальчиков и девочек собирали макулатуру?
Решение. Пусть девочек было х человек, а мальчиков у. Составим уравнение 15х + 21у = 174.
х | 6 |
|||
у |
1 |
2 |
3 |
4 |
Задавая значения у, и учитывая, что х и у натуральные числа, перебором находим решение. Ответ: было 6 девочек и 4 мальчика.
Задачи для решения:
1) Для поездки за город работникам завода было выделено несколько автобусов, с одинаковым числом мест в каждом автобусе. В лес поехали 424 человека, а на озеро 477 человек. Все места в автобусах были заняты, и всем хватило места. Сколько автобусов было выделено и сколько пассажиров было в каждом вагоне? (Ответ: 9 автобусов на озеро и 8 автобусов в лес; 53 места)
2) В кафе стоят столики на 4 и на 7 мест. Всего на 47 мест. Сколько столиков на 7 мест может быть в кафе? (Ответ: 5 столиков)
3) Решите в натуральных числах уравнение 19х + 94у = 1994 (Ответ: (100;1), (6;20))
4) В квартире 13 человек, кошек и мух. У всех вместе 42 ноги, причем у каждой мухи 6 ног. Сколько было в отдельности людей, кошек и мух? (Ответ: (8;2;3), (7;4;2), (6;6;1))
5) Купили тетради по 7 р и по 4 р. Всего на сумму 53 руб. Сколько купили тетрадей каждого вида? (Ответ: 3 по 7 р и 8 по 4 р или 7 по 7 р и 1 по 4 р)
6) По тропинке вдоль кустов
Шло 11 хвостов,
Насчитать я также смог,
Что шагало 30 ног.
Это вместе шли куда-то
Индюки и жеребята.
А теперь вопрос таков:
Сколько было индюков?
Спросим также у ребят:
Сколько было жеребят? (Ответ: 7 индюков и 4 жеребенка)
Литература:
- Галкин Е.В. Нестандартные задачи по математике //«Просвещение» - «Учебная литература» Москва 1996
- Нагибин Ф.Ф., Канин Е.С. Математическая шкатулка // Москва «Просвещение» 1984
- Смыкалова Е.В. Математика. Сборник задач по математике для учащихся 6 класса//Санкт-Петербург, СМИО, 2003