Исследование золотых фигур

Разделы: Математика


«Хороший учитель обязан понимать, что никакую задачу нельзя исчерпать до конца. Этот взгляд он должен прививать и своим ученикам».
Д. Пойа

В жизни каждого человека присутствует математика. Она используется в самых разнообразных профессиях – математика нужна инженеру, военному, биологу, художнику, можно сказать, что она нужна всем. Великий художник Леонардо да Винчи был один из тех, кто заинтересовался знаменитым золотым сечением. Он много внимания уделял изучению золотого деления. Производил сечения стереометрического тела, образованного правильными пятиугольниками, и каждый раз получал прямоугольники с отношениями сторон в золотом делении; поэтому он дал этому делению название золотое сечение.

Золотое сечение интересно тем, что оно позволяет показать связь математики с другими науками, с искусством. А также помогает исследовать золотой треугольник и золотую пирамиду; рассмотреть геометрические задачи, связанные с золотыми фигурами.

Золотое сечение – это деление отрезка на две части. Таким образом, что большая его часть относится к меньшей части как весь отрезок относится к большой части.


Рис. 1.

= или  , откуда

Иногда золотым сечением называют отношение,  к , которое обозначают буквой φ:

Число, обратное φ обозначают Ф:

Ф=

Отметим некоторые равенства, связывающие Ф и φ , которые нам впоследствии пригодятся:

1-Ф, 1+Ф=

История золотого сечения.

Принято считать, что понятие о золотом делении ввел в научный обиход Пифагор, древнегреческий философ и математик (VI в. до н.э.). Есть предположение, что Пифагор свое знание золотого деления позаимствовал у египтян и вавилонян. И действительно, пропорции пирамиды Хеопса, храмов, барельефов, предметов быта и украшений из гробницы Тутанхамона свидетельствуют, что египетские мастера пользовались соотношениями золотого деления при их создании. Французский архитектор Ле Корбюзье нашел, что в рельефе из храма фараона Сети I в Абидосе и в рельефе, изображающем фараона Рамсеса, пропорции фигур соответствуют величинам золотого деления. Зодчий Хесира, изображенный на рельефе деревянной доски из гробницы его имени, держит в руках измерительные инструменты, в которых зафиксированы пропорции золотого деления.

В фасаде древнегреческого храма Парфенона присутствуют золотые пропорции. При его раскопках обнаружены циркули, которыми пользовались архитекторы и скульпторы античного мира. В Помпейском циркуле (музей в Неаполе) также заложены пропорции золотого деления.

В дошедшей до нас античной литературе золотое деление впервые упоминается в "Началах" Евклида. Во 2-й книге "Начал" дается геометрическое построение золотого деления. После Евклида исследованием золотого деления занимались Гипсикл (II в. до н.э.), Папп (III в. н.э.) и др.. В средневековой Европе с золотым делением познакомились по арабским переводам "Начал" Евклида. Переводчик Дж. Кампано из Наварры (III в.) сделал к переводу комментарии. Секреты золотого деления ревностно оберегались, хранились в строгой тайне и они были известны только посвященным.

Великий астроном XVI в. Иоган Кеплер назвал золотое сечение одним из сокровищ геометрии. Он первый обращает внимание на значение золотой пропорции для ботаники (рост растений и их строение). Кеплер называл золотую пропорцию продолжающей саму себя «Устроена она так, – писал он, – что два младших члена этой нескончаемой пропорции в сумме дают третий член, а любые два последних члена, если их сложить, дают следующий член, причем та же пропорция сохраняется до бесконечности».

ЗОЛОТОЙ ПРЯМОУГОЛЬНИК.

Если построить квадрат со стороной АВ=а, найти середину М отрезка АВ и провести дугу окружности радиусом МС с центром в точке М до пересечения с продолжением стороны АВ в точке Е, то точка В разделит отрезок АЕ в крайнем и среднем отношении.

Чтобы убедиться в этом, заметим, что по теореме Пифагора

В силу чего

АЕ=а/2 +МЕ=(√5+1)а/2=φАВ

Прямоугольник АЕFD со сторонами АЕ=φАD называется золотым прямоугольником. Четырехугольник АВСD − квадрат. Нетрудно видеть, что прямоугольник ВЕFС также золотой, поскольку BC=a=φВЕ. Это обстоятельство сразу наводит на мысль о дальнейшем разбиении прямоугольника ВЕFС.

Можно ли считать, что прямоугольник с отношением сторон, равным φ, выглядит изящнее, чем прямоугольники с отношением сторон, скажем, 2:1, 3:2 или 5:7? Чтобы ответить на этот вопрос, были проведены специальные эксперименты. Результаты их не вполне убедительны, но все же свидетельствуют о некотором предпочтении, отдаваемом золотому сечению.

ЗОЛОТОЙ ТРЕУГОЛЬНИК И ЕГО ИССЛЕДОВАНИЕ.

Золотым треугольником будем называть равнобедренный треугольник, отношение основания которого к боковой стороне равно φ Одним из таких треугольников является треугольник с боковой стороной Ф и основанием 1; именно его мы в дальнейшем будем называть золотым. Проведем исследование золотого треугольника.

Углы золотого треугольника.

В треугольнике АВС выберем на стороне ВС точку D так, чтобы АD=1 (такую точку легко построить, проведя окружность с центром в точке А и радиусом АС). Из подобия треугольников АВС и АDС получаем:

  или , откуда DС=

Поскольку ВС=Ф, DС=φ, то, учитывая равенство Ф=, получаем, что BD=1 и треугольник ABD равнобедренный. Значит, АD- биссектриса треугольника АВС. Теперь легко найти углы треугольника АВС:

5,

В последствии нам встретятся выражения, содержащие  и , поэтому вычислим их значения и для удобства выразим через Ф:

=.

Найдем в золотом треугольнике:

  1. медиану, проведенную к боковой стороне;
  2. высоту, проведенную к основанию;
  3. площадь;
  4. высоту, проведенную к боковой стороне;

Пусть треугольник АВС − золотой. Для нахождения медианы воспользуемся формулой ,

где

.

Найдем высоту ВН: ВН=Ф

Площадь треугольника АВС будет равна: S=

Пусть – высота, проведенная к стороне ВС. Возьмем на стороне ВС точку так, чтобы . Треугольники АС и АВС подобны с коэффициентом подобия Ф, поэтому  

Применение золотого треугольника при решении задач.

Найти длины диагоналей правильного 10-угольника со стороной, равной 1.

Решение. Правильный 10-угольник имеет 4 вида диагоналей, на рисунке показано по одному представителю этих четырех множеств. Найдем их длины. Проще всего найти длину отрезка AF. Для этого найдем величину внутреннего угла правильного 10-угольника: . Теперь легко заметить, что 10-угольник состоит из 10 золотых треугольников, которые имеют общую вершину О ─ центр 10-угольника. Значит, длина диагонали AF равна 2Ф.

Найдем длину диагонали АС. Из треугольника АВС имеем:

= 22) =2(1+)= 4= 2+Ф,

откуда АС=

Найдем длину диагонали AD. В равнобоковой трапеции АВСD углы при основании равны  Нетрудно получить, что проекции отрезков АВ и СD на основании AD будут равны  .

Значит,

AD=.

Длину диагонали АЕ можно найти разными способами.

Способ 1. Будем искать ее из треугольника AEF. В этом треугольнике медиана ЕО равна половине стороны AF, поэтому треугольник AEF-прямоугольный. Тогда АЕ= AF

Способ 2. Заметим, что высота золотого треугольника EOF является средней линией треугольника AEF. Поскольку эта высота равна  , то АЕ=

Ответ: 2Ф, ,  

ЗОЛОТАЯ ПИРАМИДА И ЕЕ ИССЛЕДОВАНИЕ.

Пирамида называется золотой, если каждая её грань − золотой треугольник.

Исследование золотой пирамиды.

Различные способы нахождения объёма золотой пирамиды.

I способ: объем пирамиды находим по формуле . Для этого нам необходимо вычислить высоту пирамиды.

Пусть DABC-данная пирамида,DH − ее высота. Плоскость ADH пересекает ребро ВС в точке М, причем ВМ=СМ. Треугольник ADM − равнобедренный.

Опустим на его основание AD высоту МК. Из подобия треугольников AHD и AKM будем иметь:

 .

Поставим в это равенство известные нам числа:

AD=1 (ребро пирамиды),

МК= (расстояние между ребрами AD и ВС),

АМ= (высота золотого треугольника):

DH=. А т.к. =.

 

II способ:

  длины противоположных ребер,  расстояние между ними, – угол между ними;

 =.

III способ:

Объем золотой пирамиды – это объем прямоугольного параллелепипеда минус объем четырех маленьких пирамид с ребрами длиной 1,, и , значит:

  

Применение золотой пирамиды при решении задач.

Найдем площадь поверхности золотой пирамиды.

Решение.

= = 4 

Золотое сечение в картине Леонардо да Винчи "Джоконда"

Портрет Моны Лизы привлекает тем, что композиция рисунка построена на"золотых треугольниках" (точнее на треугольниках, являющихся кусками правильного звездчатого пятиугольника).

Золотая спираль в картине Рафаэля "Избиение младенцев"

В отличии от золотого сечения ощущение динамики, волнения проявляется, пожалуй, сильней всего в другой простой геометрической фигуре – спирали. Многофигурная композиция, выполненная в 1509 – 1510 годах Рафаэлем, когда прославленный живописец создавал свои фрески в Ватикане, как раз отличается динамизмом и драматизмом сюжета. Рафаэль так и не довел свой замысел до завершения, однако, его эскиз был гравирован неизвестным итальянским графиком Маркантинио Раймонди, который на основе этого эскиза и создал гравюру» Избиение младенцев". На подготовительном эскизе Рафаэля проведены красные линии, идущие от смыслового центра композиции −точки, где пальцы воина сомкнулись вокруг лодыжки ребенка, − вдоль фигур ребенка, женщины, прижимающей его к себе, воина с занесенным мечом и затем вдоль фигур такой же группы в правой части эскиза. Если естественным образом соединить эти куски кривой пунктиром, то с очень большой точностью получается ...золотая спираль! Это можно проверить, измеряя отношение длин отрезков, высекаемых спиралью на прямых, проходящих через начало кривой.

Мы не знаем, рисовал ли на самом деле Рафаэль золотую спираль при создании композиции " Избиение младенцев" или только"чувствовал" её. Однако с уверенностью можно сказать, что гравер Раймонди эту спираль увидел.

Об этом свидетельствуют добавленные им новые элементы композиции, подчеркивающие разворот спирали в тех местах, где она у нас обозначена лишь пунктиром. Эти элементы можно увидеть на окончательной гравюре Раймонди: арка моста, идущая от головы женщины, − в левой части композиции и лежащее тело ребенка − в ее центре.

Нельзя не увидеть золотой треугольник и золотую пирамиду в ограненных драгоценных камнях. Многие гранильщики стараются придать бриллиантам форму тетраэдра, куба, октаэдра или икосаэдра. Но эти замечательные тела еще и потому красивы, что в основе их пропорциональных линий лежит золотая пропорция. Многие материалы, и не только драгоценные камни, состоят из мельчайших частиц, которые имеют форму многогранника. Такие вещества называются кристаллами. Соль, лед, песок, графит и т. д. состоят из кристаллов. Внутреннее устройство кристалла представляется в виде кристаллической решетки, в ячейках которых размещены по законам симметрии одинаковые мельчайшие частицы.

Литература:

  1. Большая Российская энциклопедия. М., «Научное издательство», 2007.
  2. Т. Каменева, А. Козлов. Золотой треугольник в задачах. М., 2007.
  3. Журнал «Математика в школе», 1993, № 3.
  4. Ковалев Ф.В. Золотое сечение в живописи. К.: Высшая школа, 1989.
  5. "Математика – Энциклопедия для детей" М.: Аванта +, 1998.
  6. Волошинов А.В. «Математика и искусство». М.: Мир, 1979.