Альдегиды

Разделы: Химия, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (4 МБ)


Цель урока: характеризовать состав, строение, классификацию, физические и химические свойства, получение и применение альдегидов. Устанавливать взаимосвязь между изученными классами органических соединений. Знать качественные реакции на альдегиды.

Всюду в нашей жизни мы встречаемся с органической химией: мы едим продукты химической промышленности, мы одеваемся непосредственно в ее результаты: ацетатный шелк, искусственную шерсть, изделия из кожзаменителя и многое другое, благодаря химии мы можем проводить сложные операции (наркоз), лечить ангину и просто ставить уколы, где в качестве антисептика мы выбираем этиловый спирт.

Сегодня мы познакомимся с вами с классом органических веществ – альдегидами. Сегодня на уроке мы докажем, что жизнь без альдегидов невозможна. Узнаем, как связаны с этой темой хорошо известные вещества: ванилин, моющие средства, формалин, пластмасса, зеркало, уксусная кислота

Итак, альдегиды – это органические соединения, содержащие в составе своей молекулы, полярную карбонильную группу. В зависимости от заместителей, связанных с оксогруппой, эти вещества подразделяют на альдегиды и кетоны. В альдегидах с карбонильной группой связаны углеводородный радикал и атом водорода, тогда как в кетонах карбонильный углерод связан с двумя углеводородными радикалами.

Общая формула предельных карбонильных соединений CnH2n O

Названия альдегидов по тривиальной номенклатуре часто производят от названий соответствующих монокарбоновых кислот. По рациональной номенклатуре альдегиды с разветвленной углеводородной цепью рассматриваются как производные ацетальдегида. По систематической номенклатуре названия рассматриваемых соединений производятся от соответствующих алканов с добавлением суффикса – аль.

Способы получения альдегидов. Основными способами получения альдегидов является каталитическое дегидрирование спиртов, гидратация алкинов, окисление спиртов.

Физические свойства.

Первый член гомологического ряда предельных альдегидов НСОН – бесцветный газ, несколько последующих альдегидов – жидкости. Высшие альдегиды – твердые вещества. Карбонильная группа обуславливает высокую реакционную способность альдегидов. Температура кипения альдегидов возрастает с увеличением молекулярной массы. Кипят они при более низкой температуре, чем соответствующие спирты, например пропионовый альдегид при 48,8 0С, а пропиловый спирт – при 97,8 0С.

Плотность альдегидов меньше единицы. Муравьиный и уксусный альдегиды хорошо растворяются в воде, последующие – хуже. Низшие альдегиды имеют резкий, неприятный запах, некоторые высшие – приятный запах.

Реакционная способность альдегидов обусловлена наличием активной карбонильной группы. Высокая электроотрицательность атома кислорода способствует сильной поляризации двойной связи в карбонильной группе и смещению подвижных ?-электронов в сторону атома кислорода.

Химические свойства альдегидов:

1. Реакции присоединения:

А) реакция гидрирования

Б) реакция присоединения NaHSO3

2. Реакции окисления:

А) реакция серебряного зеркала

Б) реакция светофор

3. Реакция поликонденсации

4. Реакция полимеризации

Качественная реакция на карбоксильную группу - реакция окисления альдегидов гидроксидом меди (ІІ) - светофор.

НСОН + 2Cu(OH)2 = HCOOH +Cu2O +2H2O

“Реакция серебряного зеркала”

Вы можете представить себе жизнь без зеркала? Проснуться утром – и не увидеть своего отражения? Кажется, ерунда, мелочь. А ведь какой душевный дискомфорт! Недаром сказочных персонажей в качестве наказания лишали отражения. Что такое зеркало? В чем его сила? Откуда оно появилось? Как его изготавливают?

Как мы уже знаем, первыми настоящими зеркалами служили отполированные до блеска металлические пластинки из меди, золота, серебра. Однако такие зеркала имели большой недостаток – на воздухе быстро темнели и тускнели. Какой же выход нашли из этой ситуации? Многочисленные опыты показали, что блестящий металлический слой можно нанести и на стекло. Так, в I в. н.э. начали изготавливать стеклянные зеркала – стеклянные пластинки, соединенные со свинцовыми или оловянными пластинами. Делалось это так: мыли спиртом стекло, очищали его тальком и затем к поверхности плотно прижимали оловянный лист. Сверху наливали ртуть и, дав ей постоять, сливали избыток. Образовавшийся слой амальгамы заклеивали или закрашивали. Такие зеркала оказались намного долговечнее металлических, поэтому ремесленные мастерские перешли на выпуск стеклянных зеркал, отражающая поверхность которых была сделана из амальгамы олова (раствор олова Sn в ртути Hg). Но, поскольку пары ртути очень ядовиты, производство ртутных зеркал было весьма вредным, да и сами зеркала содержали ртуть. Было опасно держать ртутные зеркала в жилых помещениях.

Поэтому ученые продолжали искать замену для ртути. Ее нашли французский химик Франсуа Птижан и великий немецкий ученый Юстус Либих. Либих предложил изготавливать стеклянные зеркала с серебряным покрытием. Разработанный им метод состоял из следующих операций. Сначала к водному раствору нитрата серебра AgNO3 добавляли водный раствор гидроксида калия KОН, что приводило к осаждению черно-коричневого осадка оксида серебра Ag2O.

2AgNO3 + 2KOH = Ag2O + 2KNO3 + H2O.

Осадок отфильтровывали и перемешивали с водным раствором аммиака NH3.

Ag2O + 4NH3 + H2O = 2[Ag (NH3)2] (OH).)

Оксид серебра растворялся в аммиачной воде с образованием комплексного соединения (аммиаката, или аммина) – гидроксида диамминсеребра(I). Затем в полученный прозрачный раствор погружали лист стекла, одна из поверхностей которого была тщательно обезжирена, и добавляли формальдегид НСНО.

2[Ag (NH3)2](OH) + HCHO = 2Ag + HCOONH4 + 3NH3 + H2O.)

Формальдегид восстанавливал серебро, которое осаждалось на очищенной поверхности стекла, покрывая его блестящим зеркальным налетом.

Применение альдегидов и кетонов.

Формальдегид. Первым членом гомологического ряда предельных альдегидов является формальдегид НСОН. Его называю также метаналь и муравьиный альдегид. Он представляет собой бесцветный газ с характерным резким запахом. Широко применяется водный раствор, содержащий в массовых долях 0,4, или 40%, метаналя. Он называется формалином. Формальдегид (формалин), прозрачная бесцветная жидкость со своеобразным острым запахом. Применяют как дезинфицирующее и дезодорирующее средство для мытья рук, обмывания кожи при повышенной потливости (0,5–1%), для дезинфекции инструментов (0,5%), для спринцеваний (1:2000 – 1:3000). Входит в состав лизоформа.

Его использование основано также на свойстве свертывать белок. Так, например, в кожевенном производстве дубящее действие формалина объясняется свертыванием белка, в результате чего кожа твердеет и не подвергается гниению. На этом же свойстве основано применение формалина для сохранения биологических препаратов. Иногда формалин используется для дезинфекции и протравливания семян. Метаналь идет на производство некоторых лекарственных веществ и красителей. Большое количество метаналя используется для получения фенолформальдегидной смолы, которую получают при взаимодействии метаналя с фенолом. Эта смола необходима для производства различных пластмасс.

Пластмассы, изготовленные из фенолформальдегидной смолы в сочетании с различными наполнителями, называются фенопластами. При растворении фенолформальдегидной смолы в ацетоне или спирте получают различные лаки.

При взаимодействии метаналя с карбамидом СО(NН)2 получают карбамидную смолу, а из нее – аминопласты. Из этих пластмасс изготовляют микропористые материалы для нужд электротехники (выключатели, розетки), материалы для отделки мебели и интерьеров, древесностружечные плиты, искусственный мрамор. Тепло – и звукоизоляционные пористые материалы.

Ацетальдегид СН3 – СОН представляет собой бесцветную жидкость с резким удушающим запахом. Применяют в производстве ацетатов целлюлозы, уксусной и пероксиуксусной кислот, уксусного ангидрида, этилацетата, глиоксаля, алкиламинов, бутанола, хлораля. Подобно формальдегиду он вступает в реакции поликонденсации с аминами, фенолом и другими веществами, образуя синтетические смолы, широко применяемые в промышленности.

Бензальдегид С6Н5С(Н)=О с запахом горького миндаля содержится в миндальном масле и в эфирном масле эвкалипта. Синтетический бензальдегид используется в пищевых ароматических эссенциях и в парфюмерных композициях.

Алифатический альдегид СН3(СН2)7С (Н)=О (тривиальное название – пеларгоновый альдегид) содержится в эфирных маслах цитрусовых растений, обладает запахом апельсина, его используют как пищевой ароматизатор.

Ароматический альдегид ванилин содержится в плодах тропического растения ванили, сейчас чаще используется синтетический ванилин – широко известная ароматизирующая добавка в кондитерские изделия.

Цитраль С10Н15О (3,7-диметил – 2,6-октадиеналь) с запахом лимона используется в средствах бытовой химии.

Кротоновый альдегид. Сильный лакриматор, используют для получения бутанола, сорбиновой и масляной кислот. Содержится в соевом масле. Применение альдегидов в медицине.

Коричный альдегид содержится в масле корицы, его получают перегонкой коры дерева корицы. Применяется в кулинарии в виде палочек или порошка

Уротропин (CH2)6N4 (гексаметилентетрамин), бесцветные кристаллы без запаха, легко растворимы в воде. Водные растворы имеют щелочную реакцию. Обладает антисептическим действием. Применяют главным образом при инфекционных процессах мочевыводящих путей (циститах, пиелитах). Действие основано на способности препарата разлагаться в кислой среде с образованием формальдегида. Назначают препарат натощак. Показаниями для его применения служат холециститы, холангиты, аллергические заболевания кожи, глаз (кератиты, иридоциклиты и др.). Препарат может вызвать раздражение паренхимы почек, при этих признаках прием препарата прекращают.

Акролеин. Используется для производства пластмасс, отличающихся большой твердостью. Акролеин и его натриевые соли являются эмульгаторами, структурирующими почвы, лактонные его производные улучшают свойства бумаги и текстильных изделий.

Обобщение и систематизация знаний. Подведение итогов урока.

Таким образом, способность альдегидов и кетонов участвовать в различных превращениях определила их основное применение в качестве исходных соединений для синтеза разнообразных органических веществ: спиртов, карбоновых кислот и их ангидридов, лекарственных препаратов (уротропин), полимерных продуктов (фенолоформальдегидные смолы, полиформальдегид), в производстве всевозможных душистых веществ (на основе бензальдегида) и красителей.

Домашнее задание.