Урок математики "Логарифмы и их свойства"

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (2 МБ)


Цели и задачи урока:

  • рассмотреть понятие логарифма числа и свойства логарифмов;
  • дать понятие десятичного и натурального логарифма;
  • овладеть знаниями и умениями использовать основное логарифмическое тождество, формулы перехода от одного основания к другому в процессе решения упражнений;
  • развивать мышление учащихся при выполнении упражнений;
  • продолжить формировать умение правильно воспринимать и активно запоминать новую информацию;
  • научить учащихся определять логарифм числа и его свойства;
  • вычислять значения несложных логарифмических выражений.

Тип урока: усвоение новых знаний.

Методическое обеспечение: проектор, презентация к уроку, учебники, индивидуальные карточки.

Ход занятия

1. Организационный момент

Перед началом урока преподаватель проводит проверку подготовленности кабинета к занятию.

Приветствие учащихся, определение отсутствующих, заполнение группового журнала. Сообщается тема и цель урока. (Слайд 2)

2. Актуализация знаний

В кратком вступительном слове преподаватель акцентирует внимание студентов о важной

роли логарифмов в курсе математики, а также в общетехнических и специальных дисциплинах, при этом подчеркивает значение десятичных и натуральных логарифмов.

3. Повторение ранее изученного материала

Экспресс-опрос

Преподаватель задает вопросы:

а) Что такое степень; что такое основание степени; что такое показатель степени.

б) Работа над основными свойствами степеней. Рассмотреть связь между показателями степеней в равенствах

в) Решить устно примеры:

4. Изучение нового материала

План

1. Логарифм числа. Основные свойства логарифмов.

2. Основное логарифмическое тождество.

2. Формула перехода одного основания логарифмов к другому.

3. Десятичный логарифм.

4. Натуральный логарифм.

Преподаватель излагает новый учебный материал

Логарифм числа

Понятие логарифма числа связано с решением показательных уравнений.

Остановимся на решении двух показательных уравнений. Решение уравнения не вызывает труда. Так как то данное уравнение примет вид Поэтому уравнение имеет единственное решение

А теперь попробуем решить уравнение По теореме о корне это уравнение также имеет единственное решение. Однако, в отличие от предыдущего уравнения, это уравнение является иррациональным числом. Докажем, что корень данного уравнения является числом рациональным, т.е. Тогда выполняется равенство или Но в любой натуральной степени будет числом четным, а в любой натуральной степени – число нечетное. Получаем противоречие, которое и доказывает, что корень уравнения – число иррациональное. Обдумывая, ситуацию с показательным уравнением математики ввели в рассмотрение новый символ – логарифм. С помощью этого символа корень уравнения записали так: (читается : логарифм числа по основанию

Остановимся теперь на понятии логарифма числа. Очень часто приходится решать задачу: известно, что необходимо найти показатель степени т.е. решить задачу, обратную возведению числа в степень. При нахождении этого показателя степени и возникает понятие логарифма числа по основанию

дается определение логарифма (Слайд 3)

Например

а) log 3 81 = 4, так как 34 = 81;

б) log 125 = 3, так как 53 = 125;

в) log 0,5 16 = -4, так как (0,5)-4 = 16;

г) , так как ==

Введение основного логарифмического тождества (Слайд 4)

Обратите внимание на то, что является корнем уравнения , а поэтому =8

Таким образом и получается основное логарифмическое тождество

Это равенство является краткой символической записью определения логарифмов.

Решить примеры согласно тождеству: ;

=5; .

Подчеркнем, что и одна и таже математическая модель

Операцию нахождения логарифма числа называют ЛОГАРИФМИРОВАНИЕМ. (Слайд5) Эта операция является обратной по отношению к возведению в степень с соответствующим основанием. Сравните.

Возведение в степень Логарифмирование

Основные свойства логарифмов (Слайд 6)

Эти свойства вытекают из определения логарифма и свойств показательной функции.

При любом a > 0 (a 1) и любых положительных x и y выполнены равенства:

  • loga 1 = 0.
  • loga a = 1.
  • loga xy = loga x + loga y.
  • loga = loga x - loga y.
  • loga xp = p loga x

для любого действительного p.

Решить примеры устно. Найти x

  1. Ответ:
  2. Ответ:
  3. Ответ:
  4. Ответ:
  5. Ответ:

Десятичные и натуральные логарифмы (Слайд 7)

На практике рассматриваются логарифмы по различным основаниям, в частности по основанию 10.

Логарифмом положительного числа по основанию 10 называют десятичным логарифмом числа в и обозначается, т.е. вместо пишут .

Например, (Слайд № 6)

Натуральным логарифмом (обозначается In) называется логарифм по основанию e

Примеры вычисления десятичных логарифмов (Слайд 8)

  1. так как
  2. , так как
  3. так как
  4. так как
  5. так как
  6. так как

Формулы перехода от одного основания логарифм к другому (Слайд8)

На практике рассматривается логарифм по различным основаниям. Отсюда возникает необходимость формулы перехода от одного основания к логарифму по другому основанию. (Слайд № 6)

Решить пример типа:

Упростить выражения:

a)

б)

в)

Ответ. a) ; б); в)

5. Закрепление изученного материала

Решить устно.

Найти логарифм по основанию a числа представленного в виде степени с основанием a

Работа в парах.

Найдите число (484,485,486)

Решить устно.

Упростите выражения, пользуясь основным логарифмическим тождеством.

1) 2) 3) 4)

Выполнить упражнения. Заполнить пропуски (письменно). (Слайд 10)

6. Подведение итогов

1. Выставление и комментирование оценок на уроке

2. Домашнее задание: п37. Решить №481, 486, 487.

7. Рефлексия

Преподаватель задает учащимся вопросы:

  • Какая тема была изучена на уроке?
  • Достигнута ли цель урока?

Учащиеся призваны воспроизвести в памяти то, что усвоили, и проанализировать выводы, которые были сделаны в течение всего занятия.

  • Что вам сегодня больше всего запомнилось на уроке, что понравилось?