Решение задач по теме "Смежные и вертикальные углы"

Разделы: Математика, Конкурс «Презентация к уроку»


Презентация к уроку

Загрузить презентацию (9 МБ)


Тип урока: урок закрепления нового материала

Цели урока:

  • Образовательные: повторить и закрепить понятия о смежных и вертикальных углах;
  • Развивающие: развивать умение анализировать условие задачи;
  • Воспитательные: воспитание аккуратности (аккуратное выполнение чертежей на доске и в тетрадях, рациональное распределение записей).

Структура урока:

  • I этап. Организационный момент
  • II этап. Актуализация опорных знаний
  • III этап. Закрепление изученного материала
  • IV этап. Зарядка для глаз
  • V этап. Самостоятельная работа
  • VI этап. Домашнее задание
  • VII этап. Итог урока

Ход урока

I. Организационный момент

(Слайд 1-2)

Приветствие, сообщение темы, целей и задач. 
Учитель: Вам было задано домашнее задание: повторить п.14 и 15, ответить на вопросы 1, 2, 3, 6, 7. Сейчас проверим, как вы подготовились к уроку.

II. Актуализация опорных знаний

(Слайд 3)

Вопрос: Какие углы называются смежными? (Ответ. Два угла называются смежными, если у них одна сторона общая, а другие стороны являются дополнительными полупрямыми)

Вопрос. Из рисунка назвать смежные углы. (Ответ: ∠АОВ и ∠ВОС – смежные углы)

Вопрос. Какая сторона у них общая? (Ответ: ОВ – общая сторона.)

Вопрос. Назвать дополнительные полупрямые. (Ответ. ОС и ОА – дополнительные полупрямые.)

(Слайд 4) Вопрос. Какими свойствами обладают смежные углы?

Ответ.

  • Сумма смежных углов равна 180° (теорема)

∠1 + ∠2 = 180°

  • Если два угла равны, то и смежные с ними углы равны.
  • Если угол не развернутый, то его градусная мера меньше 180°.
  • Угол, смежный с прямым, есть прямой угол.

(Слайд 5)

Вопросы. Могут ли два смежных угла быть равными:

а) 75° и 80°; Ответ: (нет, т.к.75° + 80°=155°)
б) 94° и 96°; Ответ: (нет, т.к. 94° + 96°= 190°)
в) 83° и 97°? Ответ: (да, т.к. 83° + 97°= 180°)

(Слайд 6)

Устно.

Дано:

∠АОВ

а ∩ АО

а ∩ ОВ

∠3 = ∠4

Доказательство.

1. ∠3 смежный с ∠1, ∠4 смежный с ∠2 .

2. Т.к. ∠3 = ∠4 (по условию), то ∠1 = ∠ 2,
как углы, смежные равным углам. (по свойству смежных углов).

Доказать

∠1 = ∠2

(Слайд 7)

Вопрос. Какие углы называются вертикальными?

(Ответ. Два угла называются вертикальными, если стороны одного угла являются дополнительными полупрямыми сторон другого).

∠ 1 и ∠ 3 – вертикальные углы

∠ 2 и ∠ 4вертикальные углы

(Слайд 8)

Вопрос. Каким свойством обладают смежные углы?

Ответ. Вертикальные углы равны. (теорема)

∠ 1 = ∠ 3

∠ 2 = ∠ 4

III этап. Закрепление изученного материала. Решение задач.

(Слайд 9)

№3 (учебник)

Дано:

∠1 и ∠2– смежные

∠1 больше ∠2 в 2 раза

Решение.

1. Пусть ∠2 = х, тогда ∠1=2х

2. Т.к. ∠1 + ∠2 = 180°(по теореме о смежных углах), то

х + 2х = 180°

3х = 180°, ⇒ х =180°: 3, х = 60°.

3. Следовательно: ∠2 = 60°, ∠1 = 2∙60°= 120°

Ответ: ∠1= 120°, ∠2= 60°,

Найти ∠1 и ∠2

(Слайд 10)

№6(2)

Дано:

∠1 и ∠2 – смежные

∠1 : ∠2 = 3 : 7

Решение.

1. Пусть х. – коэффициент пропорциональности.

Тогда ∠1 = 3х, ∠2 = 7х (по условию задачи)

2. Т.к ∠1 + ∠2 = 180°(по теореме о смежных углах), то

3х + 7х = 180°, 10х = 180°, х = 18°.

3. Следовательно: ∠1 =3 ∙ 18°=54°, ∠2 =7 ∙ 18°=126°

Ответ: 54°; 126°.

Найти ∠1 и ∠2

(Слайд 11)

Дано:

∠1 и ∠2 – смежные

∠2 составляет 0,2 от∠1

Решение

1. Пусть ∠1 = х, тогда ∠2 = 0,2х (по условию).

2. Т.к. ∠1 + ∠2 = 180° (по теореме о смежных углах),
то х + 0,2х =180°, 1,2х = 180°, х = 150°,

3. Следовательно: ∠1=150°, ∠2= 0,2∙ 150°= 30°.

Ответ: 150°, 30°

Найти ∠1 и ∠2

(Слайд 12)

Дано:

а ∩ b

∠2 меньше ∠1 в 4 раза

Решение

1. Пусть ∠2 = х , тогда ∠1 = 4х (по условию),

2. Т.к. ∠1+ ∠2 = 180° (по теореме о смежных углах),
то 4х + х = 180°, 5х = 180°, х = 36°.

3. Следовательно: ∠2 = 36°, ∠1 = 4∙36° = 144°

∠3= ∠1, ∠4= ∠2 (по теореме о вертикальных углах),
значит ∠3= 144°, ∠4=36°.

Ответ: 144°, 36°, 144°, 36°.

Найти ∠1, ∠2, ∠3 и ∠4

(Слайд 13)

Дано:

AС ∩ ВD = O

∠ВОС = 23°

Решение

1. ∠АОD = ∠ВОС = 23° (по теореме о вертикальных углах)

2. ∠АОВ + ∠ВОС = 180° (по теореме о смежных углах).

Следовательно: ∠АОВ =180°– ∠ВОС,
т.е. ∠АОВ =180° – 23° = 157°

3. ∠СОD = ∠АОВ = 157° (по теореме о вертикальных углах).

Ответ: 157°, 157°, 23°.

Найти: ∠СОD,

∠АОВ, ∠АОD.

(Слайд 14)

Устно. Вопрос. Назовите смежные и вертикальные углы.

Ответ.

Смежные углы: АОМ и АОD, АОD и NОD, NОD и NОМ, NОМ и АОМ .

Вертикальные углы: АОМ и NОD, АОD и NОМ. 

IV этап. Зарядка для глаз

(Слайд 15)

V этап. Самостоятельная работа (на листочках).

Вариант 1 Вариант 2
№1. Один из углов, получившихся при пересечении двух прямых, равен 87°. Найдите остальные углы. №1. Один из углов, получившихся при пересечении двух прямых, равен 118°. Найдите остальные углы.
№2. Разность смежных углов равна 50°. Найдите меньший угол. №2. Один из смежных углов в 4 раза меньше другого. Найдите больший угол.

Ответы

Вариант 1 Вариант 2
№1. 93°, 87°, 93°. №1. 62°, 118°, 62°
№2. 75°. №2. 36°.

VI этап. Домашнее задание.

  1. §2. Пункты 14-15.
  2. Задачи на стр. 26. № 6(4), № 12.

VII этап. Итог урока.

  • Повторили понятия смежных и вертикальных углов
  • Научились решать задачи, используя знания о смежных и вертикальных углах.
  • Стали еще на одну ступеньку выше в изучении геометрии.