Урок-обобщение "Взаимодействие азотной кислоты с органическими веществами"

Разделы: Химия


Цели урока. Обобщение, закрепление и углубление знаний по особенностям взаимодействия азотной кислоты с органическими веществами, повторение типов и механизмов данных реакций, отрабатывание навыков составления УХР по генетической связи органических веществ. Выработка у школьников систематизации теоретического материала с использованием дополнительной литературы и интернет-ресурсов.

План урока:

  1. Химическая разминка.
  2. Нитросоединения. Отношение азотной кислоты к углеводородам.
  3. Взаимодействие азотной кислоты с кислородсодержащими органическими соединениями.
  4. Взаимодействие азотной кислоты с азотсодержащими органическими соединениями.
  5. Закрепление.
  6. Выводы.

Учитель:

Проведем химическую экспресс– разминку по характеристике азотной кислоты среди неорганических веществ. (За правильный ответ по 1-му баллу в индивидуальном первенстве)

  1. Назовите степень окисления и валентность азота в HNO3. Какие механизмы образования химической связи имеет место между атомами азота и кислорода в азотной кислоте?
  2. К каким электролитам она относится и чем она является с точки зрения ОВР?
  3. Перечислить ее физические свойства.
  4. Почему концентрированную азотную кислоту хранят в темном шкафу?
  5. Перечислить ее характерные общие химические свойства.
  6. Из какой кислоты металлы не способны вытеснить водород из азотной кислоты?
  7. Какие продукты преимущественно образуются при взаимодействии концентрированной и разбавленной азотной кислоты с щелочными и щелочно-земельными, тяжелыми металлами соответственно?
  8. Какие металлы пассивируются от действия холодной концентрированной азотной и серной кислот?
  9. Как относится азотная кислота к благородным металлам и что такое “царская водка”?
  10. Какие продукты образуются при растворении в концентрированной азотной кислоте угля, фосфора, серы?
  11. Какие превращения возможны при взаимодействии азотной кислоты со сложными веществами, содержащими элементы с низшими и промежуточными значениями степеней окисления?
  12. Как получают азотную кислоту в лаборатории и промышленности? Назовите эти стадии.
  13. Какие удобрения получают из азотной кислоты?

Азотная кислота среди органических веществ.

Взаимодействие азотной кислоты с углеводородами.

Вопросы для повторения можно задавать как отдельным группам (химикам-теоретикам и химикам-практикам), так и индивидуально.

Учитель: Какие классы углеводородов вступает в реакцию с азотной кислотой? (Алканы, арены)

Учитель: Составьте уравнения реакций взаимодействия метана, этана (1группа) и пропана (2группа) с азотной кислотой, укажите названия продуктов реакции, тип и механизм протекания реакции. В честь какого ученого носят название эти реакции?

Ученик:

Азотная кислота при обыкновенной температуре почти не действует на парафиновые углеводороды; при нагревании же действует главным образом как окислитель. Однако, как нашел М. И. Коновалов (1889), при нагревании азотная кислота действует отчасти и “нитрующим” образом; особенно хорошо идет реакция нитрования со слабой азотной кислотой при нагревании и повышенном давлении. Реакция нитрования выражается уравнением:

,

т. е. один из атомов водорода заменяется на остаток NO2 (нитрогруппа) и выделяется вода.

Учитель:

Особенности строения изомеров сильно отражаются на течении этой реакции, так как легче всего она ведет к замещению на нитрогруппу атома водорода в остатке СИ (имеющемся лишь в некоторых изомерах), менее легко замещается водород в группе СН2 и еще труднее — в остатке СН3.

Парафины довольно легко нитруются в газовой фазе при 150—475°С двуокисью азота или парами азотной кислоты; при этом происходит частично и окисление. Нитрованием метана получается почти исключительно нитрометан:

Последующие гомологи дают смесь различных нитропарафинов вследствие попутно идущего расщепления. При нитровании этана получаются нитроэтан СН3—СН2—NO2 и нитрометан СН3—NO2. Из пропана образуется смесь нитропарафинов:

Из нормального бутана:

Учитель: Вопрос химикам-практикам: Какое значение имеют данные вещества в народном хозяйстве?

Ученик: Нитрометан – взрывчатая и огнеопасная жидкость, малорастворимая в воде. Распад нитрометана сопровождается резким увеличением объема и выделением большого количества тепла (схема реакции):

CH3NO2 –> CO2 + H2O + N2

Применяют нитрометан в качестве растворителя (например, жиров), в производстве нитроспиртов, в качестве высококипящего однокомпонентного ракетного топлива для жидкостных ракетных двигателей.

Учитель: Обращаем внимание на химическую активность аренов. Как и в первом случае, составляем уравнения реакций взаимодействия аренов с азотной кислотой, вспоминая, какие типы химических реакций характерны для аренов? (Реакции замещения, присоединения, окисления для его гомологов)

Учитель:

  1. Какие ориентанты 1- и 2-го рода вам известны?
  2. Ответ: ориентанты первого рода – заместители, повышающие электронную плотность в -электронной системе бензольного кольца: алкильные группы, галогены, -ОН -NH2. Это заместители, обладающие положительным мезомерным эффектом (их индуктивный эффект может быть отрицательным) – OH или Br, а также заместители с положительным индуктивным эффектом (алкильные группы). Эти заместители направляют второй заметитель в o- и n-положения.

    Ориентиры второго рода – заместители, снижающие электронную плотность в -электронной системе бензольного кольца: -NO2, -SO3H, -COOH, -CN, -CHO. Это заместители, обладающие отрицательным мезомерным эффектом, или отрицательным индуктивным эффектом, которые притягивают электронную плотность бензольного кольца. Эти заместители ориентируют второй заместитель в м-положение бензольного кольца. Они обедняют электронной плотностью o– и n– положения цикла в большей степени, чем м-положение. В этом случает электронная плотность увеличивается в бензольном кольце в м-положении.

  3. Составьте уравнения химических реакций взаимодействия азотной кислоты с бензолом (1 группа) и толуолом, назовите продукты реакций; укажите типы и механизмы ХР. Реакции идут с разрывом С-Н или С-С связей?

C6H6 + HO-NO2   t, H2SO4 –>   C6H5-NO2 + H2O

Нитробензол – зеленовато – желтая жидкость с запахом миндаля, очень плохо растворимая в воде. Он очень токсичен – он окисляет гемоглобин в метоглобин:

Нитрование толуола:

C6H5-CH3 + 3HO-NO2   t, H2SO4–>

СH3-C6H2(NO2)3 + 3H2O
 2,4,6-тринитротолуол (тол, тротил)

Эти реакции относятся к реакциям электрофильного замещения.

Первичные амины получают восстановлением нитросоединений:

Учитель: Какая из данных реакций протекает интенсивнее и почему?

Ученик: Нитрование толуола осуществляется интенсивнее, чем бензола, т.к. в его молекуле имеется ориентант 1-го рода – метильный радикал – электронодонорный заместитель, направляющий другие заместители в орто- и пара-положения и нитрование толуола идет в три стадии (взаимное влияние атомов и групп атомов в органических соединениях)

Учитель: Какое практическое применение данных нитросоединений.

Нитробензол – зеленовато-желтая жидкость с запахом миндаля, очень плохо растворимая в воде. Он очень токсичен – он окисляет гемоглобин в метоглобин.

Нитросоединения – хорошие растворители.

2,4,6 –тринитротолуол (приложение 1), он же тротил, он же тол, он же TNT, он же тринитрометилбензол) – одно из наиболее распространённых бризантных взрывчатых веществ. Представляет собой желтоватое кристаллическое вещество с температурой плавления 80,35 °C. Применяется в промышленности и военном деле как самостоятельно в гранулированном (гранулотол), прессованном или литом виде, так и в составе многих взрывчатых смесей (алюмотол, аммонал, аммонит и другие).

Важнейший ароматический амин – анилин – образуется при восстановлении нитробензола:

Эта реакция носит имя русского химика Н.Н. Зинина, осуществившего ее впервые в 1842г.

Особенности реакции Зинина:

1) распространенным промышленным способом получения анилина является восстановление нитробензола металлами, например железом (чугунными стружками), в кислой среде;

2) восстановление нитросоединений соответствующего строения – это общий способ получения аминов.

Анилин

– один из важнейших продуктов химической промышленности;

a) он является исходным веществом для получения многочисленных анилиновых красителей;

b) анилин используется при получении лекарственных веществ, например сульфаниламидных препаратов, взрывчатых веществ, высокомолекулярных соединений и т. д. Открытие профессором Казанского университета Н.Н. Зининым (1842 г.) доступного способа получения анилина имело большое значение для развития химии и химической промышленности.

Учитель: Составьте УХР разложения нитросоединений аренов.

Взаимодействие азотной кислоты с кислородсодержащими органическими соединениями

Учитель:

Теперь перейдем к изучению особенностей взаимодействия азотной кислоты с кислородсодержащими органическими соединениями. Какие классы из данных групп вступают в реакцию с азотной кислотой? ( Спирты: одно- и многоатомные, фенолы).

Составьте УХР взаимодействия этанола (1 группа) и глицерина (2 группа) с азотной кислотой. Назовите продукты реакций, (к какому классу они относятся), типы и механизмы ХР. Укажите практическое применение данных продуктов реакций.

C2H5OH + HONO2 –> C2H5ONO2 + H2O

Ученик: Этилнитрат – взрывчатое вещество, сложный эфир, продукт реакции ‘ этерификации (реакция электрофильного замещения)

Многоатомные спирты взаимодействуют с кислотами, образуя сложные эфиры. При взаимодействии глицерина с азотной кислотой в присутствии концентрированной серной кислоты образуется нитроглицерин (тринитрат глицерина):

Учитель: Рассмотрите структурную формулу тринитроглицерина. Обратите внимание на то, что в молекуле этого вещества функциональная группа -NO2 связана с углеродом углеводородного радикала не непосредственно, как в нитросоединениях, а через атом кислорода.

Учитель: Какую роль имеют данные нитросоединения в практической деятельности человека? (Вопрос химикам-практикам)

Ученик: Нитроглицерин – тяжелая маслянистая жидкость со сладковатым вкусом, не растворим в воде, но хорошо растворяется в этиловом спирте.

Легко взрывается от небольшого сотрясения или нагревания (это его свойство используется для изготовления взрывчатых веществ), и на его основе изготовляют динамит. Динамит используют в военном и горном деле. При взрыве самопроизвольно происходит реакция:

4 C3H5 (ONO2) –> 12 CO2 +10H2O + 6N2 + O2

Учитель: К производным бензола относится и фенол. В чем отличие взаимодействие фенола с азотной кислотой от взаимодействия с бензолом?

Ученик: Скорость реакции взаимодействия фенола с HNO3 гораздо выше, т.к. фенол, как и толуол, содержат ориентант 1-го рода -OH группу вместо -CH3. Под влиянием фенильного радикала неподеленная электронная пару с O атома -OH группы смещается в бензольное кольцо повышением электронной плотности в положениях 2, 4, 6 и увеличивая полярность связи C-H (реакция электрофильного замещения). Бензол нитруется в одну стадию, а фенол, как толуол, в 3 стадии с образованием 2, 4, 6-тринитрофенола (взаимное влияние атомов в молекулах, разработанный А.М. Бутлеровым) или пикриновой кислоты.

Учитель: Каково значение пикриновой кислоты в народном хозяйстве?

Ученик: Пикриновая кислота (приложение 2), хим., иначе тринитрофенол C6H2(NO2)3OH; кристаллы лимонно-желтого цвета, температура плавления 1225°С, очень ядовита, имеет широкое применение при изготовлении взрывчатых веществ (мелинита и др.). Расплавленная кислота своим янтарным цветом очень напоминает мед (по-гречески – "мели"), так что нет ничего удивительного в том, что взрывчатое вещество на е основе назвали мелинитом.

Учитель: Как влияет на характер кислотных свойств появление в структуре фенола нитрогрупп?

Ученик: Под влиянием нитрогрупп кислотные свойства пикриновой кислоты выше, чем у фенола. Объясняется это тем, что NO2 группа – ориентант 2-го рода и направляет электронную плотность из бензольного кольца на OH– группу, повышая полярность O–H связи

Взаимодействие азотной кислоты с углеводами

Учитель: Какие функциональные группы содержит глюкоза – представитель моносахаридов и дисахариды: сахароза, лактоза, мальтоза?

Ученик: В молекуле глюкозы содержатся одна альдегидная группа, 5 -OH групп, в составе сахарозы (невосстанавливающегося сахара) – только -OH группы, а лактоза и мальтоза, как представители восстанавливающихся сахаров, содержат кроме -OH групп и альдегидные группы.

Учитель: На основании строения, каковы особенности взаимодействия их с азотной кислотой?

Ученик: Все упомянутые представители углеводов в виду наличия -OH групп реагируют с азотной кислотой с образованием сложных эфиров, причем с молекулой глюкозы вступает в реакцию 5 молекулами азотной кислоты.

Учитель: Наибольший практический интерес представляет реакция взаимодействия азотной кислоты с молекулой целлюлозы, причем в молекуле целлюлозы реакционноспособными являются 3 -OH группы. Составьте данное УХР и назовите продукты реакции. Какое практическое значение имеют эти нитросоединения.

Азотнокислые эфиры (нитраты целлюлозы), часто неправильно называемые нитроцеллюлозой или нитроклетчаткой, обычно получаются этерификацией целлюлозы смесью азотной и серной кислот:

причем серная кислота служит водоотнимающим средством.

В зависимости от степени нитрации различают пироксилин, или тринитрат целлюлозы, в котором этерифицированы почти все гидроксилы целлюлозы, и коллоксилин, в котором 20—30% гидроксилов остаются свободными.

Общим свойством нитратов целлюлозы (приложение 3) является их чрезвычайная горючесть и огнеопасность, что вызывает большие трудности при их производстве, переработке и применении, но вместе с тем определяет их ценность для изготовления взрывчатых веществ. Пироксилин применяется в производстве бездымного пороха, где его желатинируют смесью органических растворителей, в некоторых случаях с добавлением нитроглицерина. Коллоксилин в виде растворов применяется для изготовления кинопленки и в качестве так называемых нитролаков, Нитрат целлюлозы с еще меньшей степенью этерификации в смеси с камфорой образует пластическую массу, называемую целлулоидом и имевшую раньше значительное применение для изготовления различных изделий широкого потребления. Теперь целлулоид все более вытесняется другими пластмассами, более безопасными в пожарном отношении.

Учитель: Прошу обратить на данные химические свойства углеводов, т. к. задания ЕГЭ части В7 – требуют знания материала по теме “Химические свойства кислородсодержащих органических соединений”. (Задания в приложениях)

Учитель: Небезразлична азотная кислота и к азотсодержащим органическим соединениям. Здесь уместно будет вспомнить химические свойства аммиака. По какому механизму протекает реакция взаимодействия аммиака с кислотами, в том числе и азотной?

Ученик: Молекула аммиака вступает с кислотами в реакции по донорно–акцепторному механизму с образование ковалентной связи, где атом азота является донором электронной пары, а протон водорода молекулы кислоты – акцептором данной пары.

NH3 + HNO3 –> NH4NO3

Учитель: В чем заключаются особенности взаимодействия предельных и ароматических аминов с азотной кислотой?

Ученик: Данные реакции протекают также по донорно-акцепторному механизму, но, поскольку предельные амины обладают более выраженными основными свойствами в виду смещения электронной плотности от углеводородных радикалов на атом азота, амины энергичнее вступают с азотной кислотой, причем скорость реакции возрастает от первичных к третичным пропорционально изменению основности аминов.

CH3NH2 + HNO3 –> ( CH3NH3)NO3

При этом образуются соли аминов (нитрат метиламмония) с ионной связью.

Учитель: Как выражены основные свойства у ароматических аминов по сравнению с аммиаком?

Ученик: У ароматических аминов основные свойства по сравнению с аммиаком выражены заметно слабее т.к. фенильный радикал оттягивает электронную плотность от атома азота, поэтому анилин, как представитель ароматических аминов, вступает в реакцию с азотной кислотой с меньшей скоростью, чем с аммиаком, и еще слабее – чем с предельными аминами. При этом во всех случаях образуются соли аминов с ионной связью и одной донорно-акцепторной связью между атомом азота амина и протоном водорода молекулы азотной кислоты, как и в случае с аммиаком.

C6H5NH2 + HNO3 –> ( C6H5NH3 )NO3

При дальнейшем нитровании идет образованием м-производных нитосоединений.

Учитель: К амфотерным соединениям относятся аминокислоты. Как относится азотная кислота к аминокислотам?

Ученик: У аминокислот преобладают две функциональные группы: карбоксильная, придающая им кислотные свойства и аминогруппа, определяющая их основные свойства как и в случае с аминами. Поэтому по NH2 группе протекают реакции присоединения по донорно-акцепторному механизму (как и в случае с аминами) с образованием солей с ионной связью. При этом, чем больше число аминогрупп, тем выше скорость ХР.

Учитель: Наиболее ярко протекают реакции взаимодействия концентрированной азотной кислоты с белками с образованием ярко-желтого осадка. Данная реакция называется ксантопротеиновой (от греч. xanthos – “рыжий”) и позволяет обнаруживать содержание в составе белков ароматического кольца. В результате нитрования бензольных колец боковых цепей аминокислотных радикалов удается обнаружить фенилаланин, тирозин, гистидин, триптофан. При ожоге кожи азотной кислотой появляется желтое пятно.

Экспериментальная группа демонстрирует ксантопротеиновую реакцию.

К 1 мл раствора белка добавьте 3-4 капли концентрированной азотной кислоты (соблюдая правила техники безопасности!). Осторожно нагрейте смесь до кипения и поддерживайте его в течение 1-2 минут до изменения окраски осадка. После охлаждения смеси осторожно добавьте к ней 1-2 мл концентрированного раствора щелочи.

Для закрепления знаний используются задания приложения 4.

ВЫВОДЫ:

  1. Азотная кислота – химически активный реагент как в неорганических, так и в органических превращениях;
  2. В органических реакциях азотная кислота преимущественно вступает в реакции замещения с образованием нитросоеднений, имеющих большое практическое значение для органического синтеза и народного хозяйства;
  3. Нитрогруппа является ориентантом второго рода (элетроноакцепторным заметителем и отправляет заместители относительно бензольного ядра в мета-положение);
  4. С участием азотной кислоты в органической химии известны две именные реакции: реакции Коновалова (нитрование алканов) и Зинина (восстановление нитробензола в ароматические амины), ксантопротеиновая реакция.

В конце урока подводятся итоги урока с выявлением самого сильного знатока химии нитросоединений, успешной творческой группы.

Домашнее задание:

1) изучение конспекта урока;
2) разбор заданий приложения 4;
3) решение задач из пособий для поступающих в ВУЗы по использованию темы “Нитросоединения”.