Первый признак параллельности двух прямых. 2-й класс (КРО)

Разделы: Математика

Класс: 2


Цель урока:

  • сформировать понятие о параллельности 2-х прямых, рассмотреть первый признак параллельности прямых;
  • выработать умение применять признак при решении задач.

Задачи:

  1. Образовательные: повторение и закрепление изученного материала, формирование понятия о параллельности 2-х прямых, доказательство 1-го признака параллельности 2-х прямых.
  2. Воспитательные: воспитывать умение аккуратно вести записи в тетради и соблюдать правила построения чертежей.
  3. Развивающие задачи: развитие логического мышления, памяти, внимания.

Оборудование урока:

  • мультимедийный проектор;
  • экран, презентации;
  • чертёжные инструменты.

Ход урока

I. Организационный момент.

Приветствие, проверка готовности к уроку.

II. Подготовка к активной УПД.

Этап 1.

На первом уроке геометрии мы рассматривали взаимное расположение 2-х прямых на плоскости.

Вопрос. Сколько общих точек могут иметь две прямые?
Ответ. Две прямые могут иметь либо одну общую точку, либо не имеют не одной общей точки.

Вопрос. Как будут расположены относительно друг друга 2-е прямые, если они имеют одну общую точку?
Ответ. Если прямые имеют одну общую точку, то они пересекаются

Вопрос. Как расположены 2-е прямые относительно друг друга, если они не имеют общих точек?
Ответ. То в этом случае данные прямые не пересекаются.

Этап 2.

На прошлом уроке Вы получили задание сделать презентацию, где мы встречаемся с непересекающимися прямыми в нашей жизни и в природе. Сейчас мы посмотрим эти презентации и выберем из них лучшие. (В жюри вошли учащиеся, которым в силу низкого интеллекта сложно создать свои презентации.)

Просмотр презентаций, выполненных учащимися: «Параллельность прямых в природе и жизни», и выбор из них лучших.

III. Активная УПД (объяснение нового материала).

Этап 1.

Рисунок 1

Определение. Две прямые на плоскости, которые не пересекаются, называются параллельными.

На данной таблице изображены различные случаи расположения 2-х параллельных прямых на плоскости.

Рассмотрим, какие отрезки будут параллельными.

Рисунок 2

1) Если прямая a параллельна b, то и отрезки AB и CD параллельны.

2) Отрезок может быть параллелен прямой. Так отрезок MN параллелен прямой a.

Рисунок 3

3) Отрезок AB параллелен лучу h. Луч h параллелен лучу k.

4) Если прямая a перпендикулярна прямой c, и прямая b перпендикулярна прямой c, то прямые a и b параллельны.

Этап 2.

Углы, образованные двумя параллельными прямыми и секущей.

Рисунок 4

Две параллельные прямые пересекаются третьей прямой в двух точках. При этом образуются восемь углов, обозначенных на рисунке числами.

Некоторые пары этих углов имеют специальные названия (см. рисунок 4).

Существует три признака, параллельности двух прямых, связанных с этими углами. На этом уроке мы рассмотрим первый признак.

Этап 3.

Повторим материал, необходимый для доказательства этого признака.

Рисунок 5

Вопрос. Как называются углы, изображённые на рисунке 5?
Ответ. Углы AOC и COB называются смежными.

Вопрос. Какие углы называются смежными? Дайте определение.
Ответ. Два угла называются смежными, если у них одна сторона является общей, а две другие являются продолжениями друг друга.

Вопрос. Каким свойством обладают смежные углы?
Ответ. Смежные углы в сумме дают 180 градусов.
AOC + COB = 180°

Вопрос. Как называются углы 1 и 2?
Ответ. Углы 1 и 2 называются вертикальными.

Вопрос. Какими свойствами обладают вертикальные углы?
Ответ. Вертикальные углы равны между собой.

Этап 4.

Доказательство первого признака параллельности.

Теорема. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Рисунок 6

Дано: а и b – прямые
AB – секущая
1 = 2
Доказать: a//b.

1-ый случай.

Рисунок 7

Если 1 и 2 прямые, то a перпендикулярен AB, и b перпендикулярен AB, то а//b.

2-ой случай.

Рисунок 8

Рассмотрим случай, когда 1 и 2 не прямые Разделим отрезок AB пополам точкой O.

Вопрос. Какими будут отрезки AO и OB по длине?
Ответ. Отрезки AO и OB равны по длине.

1) Из точки O проведём перпендикуляр к прямой а, ОН перпендикулярен a.

Вопрос. Каким будет угол 3?
Ответ. Угол 3 будет прямым.

2) От точки А на прямой b отложим циркулем отрезок АН1 = ВН.

3) Проведём отрезок ОН1.

Вопрос. Какие треугольники образовались в результате доказательства?
Ответ.
Треугольник ОНВ и треугольник ОН1А.

Докажем, что они равны.

Вопрос. Какие углы равны по условию теоремы?
Ответ. Угол 1 равен углу 2.

Вопрос. Какие стороны равны по построению.
Ответ. АО = ОВ и АН1 = ВН

Вопрос. По какому признаку равны треугольники?
Ответ. Треугольники равны по двум сторонам и углу между ними (первый признак равенства треугольников).

Вопрос. Каким свойством обладают равные треугольники?
Ответ. В равных треугольниках против равных сторон лежат равные углы.

Вопрос. Какие углы будут равны?
Ответ. 5 = 6, 3 = 4.

Вопрос. Как называются 5 и 6?
Ответ. Эти углы называются вертикальными.

Из этого следует, что точки: Н1, О, Н лежат на одной прямой.
Т.к. 3 – прямой, а 3 = 4, то 4 – прямой.

Вопрос. Как расположены прямые а и b по отношению к прямой НН1, если углы 3 и 4 прямые?
Ответ. Прямые а и b перпендикулярны HH1.

Вопрос. Что мы можем сказать о двух перпендикулярах к одной прямой?
Ответ. Два перпендикуляра одной прямой параллельны.

Итак, а//b. Теорема доказана.

Сейчас я повторю все доказательство сначала, а Вы внимательно меня послушаете постараетесь все понять запомнить.

IV. Закрепление нового материала.

Работа по группам с разным уровнем развития интеллекта, с последующей проверкой на экране и на доске. У доски работают 3 ученика (по одному из каждой группы).

№1 (для учащихся со сниженным уровнем интеллектуального развития).

Дано: а и b прямые
с – секущая
1 = 37°
7 = 143°
Доказать: а//b.

Решение.

7 = 6 (вертикальные) 6 = 143°
1 + 4 = 180° (смежные) 4 =180° – 37° = 143°
4 = 6 = 143°, а они накрест лежащие а//b

Рисунок 9

№2 (для учащихся со средним уровнем интеллектуального развития).

Дано: a//b
с – секущая
3 = 52°
Найти: L5, 8.

Решение.

Т.к a//b, с – секущая, то 3 = = 52° (накрест лежащие углы)
5 = 8 = 52°
Ответ. 5 = 52°, 8 = 52°.

Рисунок 10

№3 (для учащихся с повышенным уровнем интеллектуального развития).

Дано: а и b – прямые
с – секущая
L3 = 48°
L5 = 48°
Доказать: что a//b.

Решение.

3 = 5 = 48°, 3 и 5 – накрест лежащие углы, они равны a//b.

Рисунок 11

V. Итог урока.

Итог урока проводится с использованием рисунков 1-8.

Производится оценка деятельности учащихся на уроке (каждый ученик получает соответствующий смайлик).

Домашнее задание: учить – стр. 52-53; решить №186 (б, в).